Building adaptive tests using Bayesian networks
Kybernetika, Tome 40 (2004) no. 3, pp. 333-348 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We propose a framework for building decision strategies using Bayesian network models and discuss its application to adaptive testing. Dynamic programming and $AO^{\star }$ algorithm are used to find optimal adaptive tests. The proposed $AO^{\star }$ algorithm is based on a new admissible heuristic function.
We propose a framework for building decision strategies using Bayesian network models and discuss its application to adaptive testing. Dynamic programming and $AO^{\star }$ algorithm are used to find optimal adaptive tests. The proposed $AO^{\star }$ algorithm is based on a new admissible heuristic function.
Classification : 68T05, 68T20, 68T30, 68T37
Keywords: Bayesian networks; adaptive testing; heuristic search
@article{KYB_2004_40_3_a5,
     author = {Vomlel, Ji\v{r}{\'\i}},
     title = {Building adaptive tests using {Bayesian} networks},
     journal = {Kybernetika},
     pages = {333--348},
     year = {2004},
     volume = {40},
     number = {3},
     mrnumber = {2103934},
     zbl = {1249.68174},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_3_a5/}
}
TY  - JOUR
AU  - Vomlel, Jiří
TI  - Building adaptive tests using Bayesian networks
JO  - Kybernetika
PY  - 2004
SP  - 333
EP  - 348
VL  - 40
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_3_a5/
LA  - en
ID  - KYB_2004_40_3_a5
ER  - 
%0 Journal Article
%A Vomlel, Jiří
%T Building adaptive tests using Bayesian networks
%J Kybernetika
%D 2004
%P 333-348
%V 40
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_3_a5/
%G en
%F KYB_2004_40_3_a5
Vomlel, Jiří. Building adaptive tests using Bayesian networks. Kybernetika, Tome 40 (2004) no. 3, pp. 333-348. http://geodesic.mathdoc.fr/item/KYB_2004_40_3_a5/

[1] Almond R. G., Mislevy R. J.: Graphical models and computerized adaptive testing. Appl. Psychological Measurement 23 (1999), 3, 223–237 | DOI

[2] Andreassen S., Jensen F. V., Andersen S. K., Falck B.: V. Kjærulff, M. Woldbye, A. R. Sørensen, A. Rosenfalck, and F. Jensen: MUNIN - An expert EMG assistant. In: Computer-Aided Electromyography and Expert Systems (J. E. Desmedt, ed.), Elsevier Science Publishers, Amsterdam 1989

[3] Ben-Bassat M.: Myopic policies in sequential classification. Trans. Comput. 27 (1978), 2, 170–174 | DOI | MR

[4] Conati C., Gertner A. S., VanLehn, K., Druzdzel M. J.: On-Line Student Modeling for Coached Problem Solving Using Bayesian Networks. In: Proc. Sixth Internat. Conference on User Modeling (UM97) (A. Jameson, C. Paris, and C. Tasso, eds.), Chia Laguna, Sardinia, Italy, 1997

[5] Millán E., Pérez-de-la-Cruz J. L.: A Bayesian Diagnostic Algorithm for Student Modeling and its Evaluation. User Modeling and User Adapted Interaction 12 (2002), 2–3, 281–330 | Zbl

[6] Būtėnas L., Brilingaitė A., Čivilis A., Yin, X., Zokaitė N.: Computerized Adaptive Test Based on Bayesian Network for Basic Operations with Fractions. Student Project Report, Aalborg University, 2001, http://www.cs.auc.dk/library

[7] Greiner R., Grove A. J., Roth D.: Learning cost-sensitive active classifiers. Artificial Intelligence 130 (2002), 2, 137–174 | DOI | MR

[8] Heckerman D., Horwitz, E., Nathwani B.: Towards normative expert systems: Part I, the Pathfinder project. Methods Inform. Medicine 31 (1992), 90–105

[9] Explorer, Hugin, 2002, ver. 6.0. Comput. Software, http//: www. hugin.com

[10] Jensen F. V.: Bayesian Networks and Decision Graphs. Springer–Verlag, New York – Berlin – Heidelberg 2001 | MR

[11] Jensen F. V., Lauritzen S. L., Olesen K. G.: Bayesian updating in recursive graphical models by local computation. Comput. Statist. Quarterly 4 (1990), 269–282 | MR

[12] Lauritzen S. L.: The EM-algorithm for graphical association models with missing data. Comput. Statist. Data Anal. 1 (1995), 191–201 | DOI | Zbl

[13] Lauritzen S. L., Spiegelhalter D. J.: Local computations with probabilities on graphical structures and their application to expert systems (with discussion). J. Roy. Statist. Soc. Ser. B 50 (1988), 157–224 | MR

[14] Lauritzen S. L.: Some Modern Applications of Graphical Models. In: Highly Structured Stochastic Systems (P. J. Green, N. L. Hjort, and S. Richardson, eds.), Oxford University Press, Oxford 2002 | MR

[15] Lord F. M.: A Theory of Test Scores. Psychometrica Monograph No. 7 (1952)

[16] Pattipati K. R., Alexandridis M. G.: Application of heuristic search and information theory to sequential fault diagnosis. IEEE Trans. Systems Man Cybernet. 20 (1990), 4, 872–887 | DOI | Zbl

[17] Pearl J.: Reverend Bayes on inference engines: a distributed hierarchical approach. In: Proc. AAAI National Conference on AI, Pittsburgh 1982, pp. 133–136

[18] Pearl J.: Heuristics – Intelligent Search Strategies for Computer Problem Solving. Addison-Wesley, Reading, MA 1984

[19] Pearl J.: Fusion, propagation and structuring in belief networks. Artificial Intelligence 29 (1986), 3, 241–288 | DOI | MR | Zbl

[20] Rasch G.: Probabilistic Models for Some Intelligence and Attainment Tests. Technical Report, Danish Institute for Educational Research, Copenhagen 1960

[21] Spiegelhalter D. J., Knill-Jones R. P.: Statistical and knowledge-based approaches to clinical decision-support systems. J. Roy. Statist. Soc. Ser. A 147 (1984), 35–77 | DOI | Zbl

[22] Spirtes P., Glymour, C., Scheines R.: Causation, Prediction, and Search (Lecture Notes in Statistics 81). Springer–Verlag, Berlin 1993 | DOI | MR

[23] Linden W. J. Van Der, Glas C. A. W.: Computerized Adaptive Testing: Theory and Practice. Kluwer, Dordrecht 2000

[24] Vomlel J.: Bayesian networks in educational testing. Internat. J. Uncertainty, Fuzziness and Knowledge Based Systems 12 (2004), Supplementary Issue 1, 83–100 | DOI | Zbl

[25] Vomlelová M., Vomlel J.: Troubleshooting: NP-hardness and solution methods. Soft Comput. J. 7 (2003), 5, 357–368 | DOI | Zbl

[26] Wainer H., Thissen, D., Mislevy R. J.: Computerized Adaptive Testing: A Primer. Second edition. Mahwah, Lawrence Erlbaum Associates, N. J. 2000