Keywords: graded classification; ILP; annotated programs
@article{KYB_2004_40_3_a4,
author = {Vojt\'a\v{s}, Peter and Horv\'ath, Tom\'a\v{s} and Kraj\v{c}i, Stanislav and Lencses, Rastislav},
title = {An {ILP} model for a monotone graded classification problem},
journal = {Kybernetika},
pages = {317--332},
year = {2004},
volume = {40},
number = {3},
mrnumber = {2103932},
zbl = {1249.68265},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_3_a4/}
}
TY - JOUR AU - Vojtáš, Peter AU - Horváth, Tomáš AU - Krajči, Stanislav AU - Lencses, Rastislav TI - An ILP model for a monotone graded classification problem JO - Kybernetika PY - 2004 SP - 317 EP - 332 VL - 40 IS - 3 UR - http://geodesic.mathdoc.fr/item/KYB_2004_40_3_a4/ LA - en ID - KYB_2004_40_3_a4 ER -
Vojtáš, Peter; Horváth, Tomáš; Krajči, Stanislav; Lencses, Rastislav. An ILP model for a monotone graded classification problem. Kybernetika, Tome 40 (2004) no. 3, pp. 317-332. http://geodesic.mathdoc.fr/item/KYB_2004_40_3_a4/
[1] Andrejková G., Jirásek J.: Neural network topologies and evolutionary design. Neural Network World 6 (2001), 547–560
[3] Bouchon-Meunier B., Marsala, Ch.: Improvement of the interpretability of fuzzy rules constructed by means of fuzzy decision tree based systems. In: Abstracts of FSTA 2002, Liptovský Ján, Slovakia 2002
[5] Drobics M., Bodenhofer, U., Winiwarter W.: Interpretation of self-organizing maps with fuzzy rules. In: ICTAI 2000, IEEE
[6] Džeroski S., Lavrač N.: An introduction to inductive logic programming. In: Relational Data Mining (S. Džeroski and N. Lavrač, eds.) Springer–Verlag, Berlin 2001, pp. 48–73
[7] al L. Getoor et: Learning probabilistic relational models. In: Relational Data Mining (S. Džeroski and N. Lavrač, eds.), Springer–Verlag, Berlin 2001, pp. 307–335 | Zbl
[8] Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht 1999 | MR | Zbl
[11] Jenčušová E., Jirásek J.: Formal methods of security protocols. Tatra Mt. Math. Publ. 25 (2002), 1–10
[12] Kersting K., Raedt L. De: Towards combining Inductive Logic Programming with Bayesian Networks. In: Proc. ILP 2001 (C. Rouveirol and M. Sebagh, eds., Lecture Notes in Artificial Intelligence 2157), Springer–Verlag, Berlin 2001, pp. 118–131 | MR | Zbl
[13] Kersting K., Raedt L. De: Adaptive Bayesian Logic Programs. In: Proc. ILP 2001 (C. Rouveirol and M. Sebagh, eds., Lecture Notes in Artificial Intelligence 2157), Springer–Verlag, Berlin 2001, pp. 104–117 | MR | Zbl
[14] Kifer M., Subrahmanian V. S.: Theory of generalized anotated logic programming and its applications. J. Logic Programming 12 (1992), 335–367 | DOI | MR
[15] Klose A., Nürnberger A., Nauck, D., Kruse R.: Data Mining with Neuro-Fuzzy Models. In: Data Mining and Computational Intelligence (A. Kandel, H. Bunke, and M. Last, eds.), Physica–Verlag, Heidelberg 2001, pp. 1–36
[16] Krajči S., Lencses, R., Vojtáš P.: A data model for annotated programs. In: ADBIS’02-Research Com. (Y. Manolopoulos and P. Návrat, eds.), Vydavatelstvo STU, Bratislava 2002, pp. 141–154
[17] Krajči S., Lencses, R., Vojtáš P.: A comparison of fuzzy and annotated logic programming. Fuzzy Sets and Systems 144 (2004), 173–192 | MR | Zbl
[18] Lin C.-T., Lee C.-C.: Neural Fuzzy Systems. A Neuro-Fuzzy Synergism to Intelligent Systems. Prentice Hall, New York 1996
[20] Muggleton S.: Inductive logic programming. New Gen. Comp. 8 (1991), 295–318 | DOI | Zbl
[21] Muggleton S.: Inverse entailment and Progol. New Gen. Comp. 13 (1995), 245–286 | DOI
[22] Nauck D., Klawonn, F., Kruse R.: Foundations of Neuro-Fuzzy Systems. Wiley, Chichester 1997
[23] Quinlan J. R.: Learning logical definitions from relations. Mach. Learning 5 (1990), 239–266 | DOI
[24] Quinlan J. R., Cameron-Jones R. M.: FOIL: A midterm report. In: Proc. 6th European Conference on Machine Learning (P. Brazdil, ed., Lecture Notes in Artificial Intelligence 667), Springer–Verlag, Berlin 1993, pp. 3–20
[25] Raedt L. De, Džeroski S.: First order jk-clausal theories are PAC-learnable. Artificial Intelligence 70 (1994), 375–392 | DOI | MR | Zbl
[26] al D. Shibata et: An induction algorithm based on fuzzy logic programming. In: Proc. PAKDD’99 (Ning Zhong and Lizhu Zhou, eds., Lecture Notes in Computer Science 1574), Springer–Verlag, Berlin 1999, pp. 268–273
[28] Vojtáš P.: Fuzzy logic programming. Fuzzy Sets and Systems 124 (2001), 361–370 | DOI | MR | Zbl
[29] Železný F.: Learning functions from imperfect positive data. In: Proc. ILP 2001 (C. Rouveirol and M. Sebag, eds., Lecture Notes in Computer Science 2157), Springer–Verlag, Berlin 2001, pp. 248–259 | Zbl