@article{KYB_2004_40_3_a2,
author = {Novovi\v{c}ov\'a, Jana and Mal{\'\i}k, Anton{\'\i}n},
title = {Text document classification based on mixture models},
journal = {Kybernetika},
pages = {293--304},
year = {2004},
volume = {40},
number = {3},
mrnumber = {2103933},
zbl = {1248.62107},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_3_a2/}
}
Novovičová, Jana; Malík, Antonín. Text document classification based on mixture models. Kybernetika, Tome 40 (2004) no. 3, pp. 293-304. http://geodesic.mathdoc.fr/item/KYB_2004_40_3_a2/
[1] Battiti R.: Using mutual information for selecting features in supervised neural net learning. IEEE Trans. Neural Networks 5 (1994), 537–550 | DOI
[2] Dempster A. P., Laird N. M., Rubin D. B.: Maximum likelihood from incomplete data via the EM algorithm. J. Roy. Statist. Soc. Ser. B 39 (1977), 1–38 | MR | Zbl
[3] Forman G.: An experimental study of feature selection metrics for text categorization. J. Mach. Learning Res. 3 (2003), 1289–1305
[4] Joachims T.: Text categorization with support vector machines: Learning with many relevant features. In: Proc. 10th European Conference on Machine Learning (ECML’98), 1998, pp. 137–142
[5] Juan A., Vidal E.: On the use of Bernoulli mixture models for text clasification. Pattern Recognition 35 (2002), 2705–2710 | DOI
[6] Kwak N., Choi C.: Improved mutual information feature selector for neural networks in supervised learning. In: Proc. Internat. Joint Conference on Neural Networks (IJCNN ’99), 1999 pp. 1313–1318
[7] McCallum A., Nigam K.: A comparison of event models for naive Bayes text classification. In: Proc. AAAI-98 Workshop on Learning for Text Categorization, 1998
[8] McLachlan G. J., Peel D.: Finite Mixture Models. Wiley, New York 2000 | MR | Zbl
[9] Mladenic D., Grobelnik M.: Feature selection for unbalanced class distribution and Naive Bayes. In: Proc. Sixteenth Internat. Conference on Machine Learning, 1999, pp. 258–267
[10] Nigam K., McCallum A., Thrun, S., Mitchell T.: Text classification from labeled and unlabeled documents using EM. Mach. Learning 39 (2000), 103–134 | DOI | Zbl
[11] Novovičová J., Pudil, P., Kittler J.: Divergence based feature selection for multimodal class densities. IEEE Trans. Pattern Anal. Machine Intell. 18 (1996), 218–223 | DOI
[12] Novovičová J., Malík A.: Text Document Classification Using Finite Mixtures. Research Report No. 2063, Institute of Information Theory and Automation, Prague 2002
[13] Novovičová J., Malík A.: Application of multinomial mixture model to text classification. In: Pattern Recognition and Image Analysis (Lecture Notes in Computer Sciences 2652), Springer–Verlag, Berlin 2003, pp. 646–653
[14] Novovičová J., Malík, A., Pudil P.: Feature selection using improved mutual information for text classification. In: Structural, Syntactic and Statistical Pattern Recognition (Lecture Notes in Computer Science), Springer–Verlag, Berlin 2004 (in press) | Zbl
[15] Pudil P., Novovičová, J., Kittler J.: Feature selection based on approximation of class densities by finite mixtures of special type. Pattern Recognition 28 (1995), 1389–1398 | DOI
[16] Ueda N., Saito K.: Parametric mixture models for multi-labeled text. In: Proc. Neural Information Processing Systems, 2003
[17] Yang Y., Pedersen J. O.: A comparative study on feature selection in text categorization. In: Proc. Internat. Conference on Machine Learning, 1997, pp. 412–420
[18] Yang Y., Liu X.: A re-examination of text categorization methods. In: Proc. 22nd Internat. ACM SIGIR Conference on Research and Development in Inform. Retrieval, 1999, pp. 42–49
[19] Yang Y.: An evaluation of statistical approaches to text categorization. J. Inform. Retrieval 1 (1999), 67–88 | DOI
[20] Yang Y., Zhang, J., Kisiel B.: A scalability analysis of classifier in text categorization. In: Proc. 26th ACM SIGIR Conference on Research and Development in Inform. Retrieval, 2003