Keywords: geometric sum; upper bound for the uniform distance; stability; risk process; ruin probability
@article{KYB_2004_40_2_a6,
author = {Gordienko, Evgueni},
title = {Stability estimates of generalized geometric sums and their applications},
journal = {Kybernetika},
pages = {257--272},
year = {2004},
volume = {40},
number = {2},
mrnumber = {2069182},
zbl = {1249.91040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a6/}
}
Gordienko, Evgueni. Stability estimates of generalized geometric sums and their applications. Kybernetika, Tome 40 (2004) no. 2, pp. 257-272. http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a6/
[1] Asmussen S.: Applied Probability and Queues. Wiley, Chichester 1987 | MR | Zbl
[2] Brown M.: Error bounds for exponential approximation of geometric convolutions. Ann. Probab. 18 (1990), 1388–1402 | DOI | MR
[3] Feller W.: An Introduction to Probability Theory and Its Applications. Volume 2. Wiley, New York 1971 | MR | Zbl
[4] Gertsbakh I. B.: Asymptotic methods in reliability theory: A review. Adv. in Appl. Probab. 16 (1984), 147–175 | DOI | MR | Zbl
[5] Gordienko E. I.: Estimates of stability of geometric convolutions. Appl. Math. Lett. 12 (1999), 103–106 | DOI | MR | Zbl
[6] Gordienko E. I., Chávez J. Ruiz de: New estimates of continuity in $M|GI|1|\infty $ queues. Queueing Systems Theory Appl. 29 (1998), 175–188 | MR
[7] Grandell J.: Aspects of Risk Theory. Springer–Verlag, Heidelberg 1991 | MR | Zbl
[8] Kalashnikov V. V.: Mathematical Methods in Queuing Theory. Kluwer, Dordrecht 1994 | MR | Zbl
[9] Kalashnikov V. V.: Two-sided bounds of ruin probabilities. Scand. Actuar. J. 1 (1996), 1–18 | DOI | MR | Zbl
[10] Kalashnikov V. V.: Geometric Sums: Bounds for Rare Events with Applications. Kluwer, Dordrecht 1997 | MR | Zbl
[11] Kalashnikov V. V., Rachev S. T.: Mathematical Methods for Construction of Queueing Models. Wadsworth & Brooks/Cole, Pacific Grove 1990 | MR | Zbl
[12] Petrov V. V.: Sums of Independent Random Variables, Springer–Verlag, Berlin 197. | MR
[13] Rachev S. T.: Probability Metrics and the Stability of Stochastic Models. Wiley, Chichester 1991 | MR | Zbl
[14] Senatov V. V.: Normal Approximation: New Results, Methods and Problems. VSP, Utrecht 1998 | MR | Zbl
[15] Ushakov V. G., Ushakov V. G.: Some inequalities for characteristic functions with bounded variation. Moscow Univ. Comput. Math. Cybernet. 3 (2001), 45–52
[16] Zolotarev V.: Ideal metrics in the problems of probability theory. Austral. J. Statist. 21 (1979), 193–208 | DOI | MR | Zbl