Design of reaching phase for variable structure controller based on SVD method
Kybernetika, Tome 40 (2004) no. 2, pp. 233-256 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper considers a design of variable structure with sliding mode controller for a class of uncertain dynamic system based on Singular Value Decomposition (SVD) method. The proposed method reduces the number of switching gain vector components and performs satisfactorily while the external disturbance does not satisfy the matching conditions. Subsequently the stability of the global system is studied and furthermore, the design of switched gain matrix elements based on fuzzy logic approach provides useful results for smooth control actions and decreases the reaching phase time. The efficacy of the proposed method is demonstrated by considering an interconnected power system problem.
This paper considers a design of variable structure with sliding mode controller for a class of uncertain dynamic system based on Singular Value Decomposition (SVD) method. The proposed method reduces the number of switching gain vector components and performs satisfactorily while the external disturbance does not satisfy the matching conditions. Subsequently the stability of the global system is studied and furthermore, the design of switched gain matrix elements based on fuzzy logic approach provides useful results for smooth control actions and decreases the reaching phase time. The efficacy of the proposed method is demonstrated by considering an interconnected power system problem.
Classification : 93B12, 93C42, 93C95, 93D30
Keywords: reaching-phase; sliding mode; matching condition; singular value decomposition; fuzzy logic; Lyapunov function
@article{KYB_2004_40_2_a5,
     author = {Ray, Goshaidas and Dey, Sitansu},
     title = {Design of reaching phase for variable structure controller based on {SVD} method},
     journal = {Kybernetika},
     pages = {233--256},
     year = {2004},
     volume = {40},
     number = {2},
     mrnumber = {2069181},
     zbl = {1249.93031},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a5/}
}
TY  - JOUR
AU  - Ray, Goshaidas
AU  - Dey, Sitansu
TI  - Design of reaching phase for variable structure controller based on SVD method
JO  - Kybernetika
PY  - 2004
SP  - 233
EP  - 256
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a5/
LA  - en
ID  - KYB_2004_40_2_a5
ER  - 
%0 Journal Article
%A Ray, Goshaidas
%A Dey, Sitansu
%T Design of reaching phase for variable structure controller based on SVD method
%J Kybernetika
%D 2004
%P 233-256
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a5/
%G en
%F KYB_2004_40_2_a5
Ray, Goshaidas; Dey, Sitansu. Design of reaching phase for variable structure controller based on SVD method. Kybernetika, Tome 40 (2004) no. 2, pp. 233-256. http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a5/

[1] Bag S. K., Spurgeon S. K., Edwards C.: Output feedback sliding mode design for linear uncertain systems. IEE Proc. D, Control Theory Appl. 144 (1997), 209–216 | DOI | Zbl

[2] Chen C. L., Chang M. H.: Optimal design of fuzzy sliding mode control: A comparative study. Fuzzy Sets and Systems 93 (1998), 37–48

[3] DeCarlo R. A., Zak S. H., Matthews G. P.: Variable structure control of nonlinear multivariable systems: a tutorial. Proc. IEEE 76 (1988), 212–232

[4] Edwarda C., Spurgeon S. K.: Sliding Mode Control: Theory and Applications. Taylor and Francis Ltd., 1998

[5] Fosha C. E., Elgerd O. I.: The megawatt-frequency control problem: A new approach via optimal control theory. IEEE Trans. Power Apparatus Systems 89 (1970), 563–577 | DOI

[6] Hung J. Y., Gao, W., Hung J. C.: Variable structure control: a survey. IEEE Trans. Industrial Electronics 40 (1993), 2–22 | DOI

[7] Nobel N., Daniel J. W.: Applied Linear Algebra. Prentice–Hall, Englewood Cliffs, N. J. 1988

[8] Slotine J. J. E.: Sliding controller design for nonlinear systems. Internat. J. Control 40 (1984), 421–434 | DOI | Zbl

[9] Slotine J. J. E., Li W.: Applied Non-Linear Control. Prentice–Hall, Englewood Cliffs, N. J. 1991

[10] Utkin V. I.: Variable structure systems with sliding modes. IEEE Trans. Automat. Control 22 (1977), 212–222 | DOI | MR | Zbl

[11] White B. A., Silson P. M.: Reachability in variable structure control systems. IEE Proc. D, Control Theory Appl. 131 (1984), 85–91 | DOI | Zbl

[12] Young K. D., Utkin V. I.: A control engineer’s guide to sliding mode control. IEEE Trans. Systems Technology 7 (1999), 7, 328–342 | DOI

[13] Yoo D. S., Chung M. J.: A variable structure control with simple adaptation laws for upper bounds on the norm of the uncertainties. IEEE Trans. Automat. Control 37 (1992), 860–864 | DOI | MR | Zbl

[14] Zhou K., Khargonekar P. P.: Robust stabilizing of linear systems with norm bounded time varying uncertainty. Systems Control Lett. 10 (1988), 17–20 | DOI | MR