Design of robust output affine quadratic controller
Kybernetika, Tome 40 (2004) no. 2, pp. 221-232 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper addresses the problem robust output feedback controller design with guaranteed cost and affine quadratic stability for linear continuous time affine systems. The proposed design method leads to a non-iterative LMI based algorithm. A numerical example is given to illustrate the design procedure.
The paper addresses the problem robust output feedback controller design with guaranteed cost and affine quadratic stability for linear continuous time affine systems. The proposed design method leads to a non-iterative LMI based algorithm. A numerical example is given to illustrate the design procedure.
Classification : 49N10, 93C05, 93D15
Keywords: robust control; parameter dependent Lyapunov function; affine quadratic stability; LMI approach
@article{KYB_2004_40_2_a4,
     author = {Vesel\'y, Vojtech},
     title = {Design of robust output affine quadratic controller},
     journal = {Kybernetika},
     pages = {221--232},
     year = {2004},
     volume = {40},
     number = {2},
     mrnumber = {2069180},
     zbl = {1249.93151},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a4/}
}
TY  - JOUR
AU  - Veselý, Vojtech
TI  - Design of robust output affine quadratic controller
JO  - Kybernetika
PY  - 2004
SP  - 221
EP  - 232
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a4/
LA  - en
ID  - KYB_2004_40_2_a4
ER  - 
%0 Journal Article
%A Veselý, Vojtech
%T Design of robust output affine quadratic controller
%J Kybernetika
%D 2004
%P 221-232
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a4/
%G en
%F KYB_2004_40_2_a4
Veselý, Vojtech. Design of robust output affine quadratic controller. Kybernetika, Tome 40 (2004) no. 2, pp. 221-232. http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a4/

[1] Benton R. E., Jr., Smith D.: A non iterative LMI based algorithm for robust static output feedback stabilization. Internat. J. Control 72 (1999), 1322–1330 | DOI | MR | Zbl

[2] Boyd S., Ghaoui L. El., Feron, E., Balakrishnan V.: Linear Matrix Inequalities in System and Control Theory. SIAM 115 (1994), Philadelphia | MR | Zbl

[3] Crusius C. A. R., Trofino A.: Sufficient LMI conditions for output feedback control problems. IEEE Trans. Automat. Control 44 (1999), 5, 1053–1057 | DOI | MR | Zbl

[4] Ghaoui L. El, Balakrishnan V.: Synthesis of fixed structure controllers via numerical optimization. In: Proc. 33rd Conference on Decision and Control, Lake Buena Vista, FL 1994, pp. 2678–2683

[5] Gahinet P., Apkarian, P., Chilali M.: Affine parameter dependent Lyapunov functions and real parametric uncertainty. IEEE Trans. Automat. Control 41 (1996), 436–442 | DOI | MR | Zbl

[6] Gahinet P., Nemirovski A., Laub A. J., Chilali M.: LMI Control Toolbox User’s Guide. The Mathworks Inc., Natick MA 1995

[7] Geromel J. C., Souza C. E. De, Skelton R. E.: Static output feedback controllers: stability and convexity. IEEE Trans. Automat. Control 43 (1998), 120–125 | DOI | MR | Zbl

[8] Goh K. C., Safonov M. G., Papavassilopoulos G. P.: Global optimization for the biaffine matrix inequality problem. J. Global Optim. 7 (1995), 365–380 | DOI | MR | Zbl

[9] Gyurkovics E., Takacs T.: Stabilisation of discrete-time interconnected systems under control constraints. Proc. IEE Control Theory and Applications 147 (2000), 137–144

[10] Hejdiš J., Kozák, Š., Juráčková L.: Self-tuning controllers based on orthonormal functions. Kybernetika 36 (2000), 477–491

[11] Henrion D., Alzelier, D., Peaucelle D.: Positive polynomial matrices and improved robustness conditions. In: Proc. 15th Triennial World Congres, Barcelona 2002, CD

[12] Kose I. E., Jabbari F.: Robust control of linear systems with real parametric uncertainty. Automatica 35 (1999), 679–687 | DOI | MR | Zbl

[13] A.Kozáková: Robust Decentralized control of complex systems in frequency domain. In: Preprints of 2nd IFAC Workshop on NTDCS, Elsevier Kidlington UK, 1999

[14] Kučera V., Souza C. E. De: A necessary and sufficient conditions for output feedback stabilizability. Automatica 31 (1995), 1357–1359 | DOI | MR

[15] Yu, Li, Chu, Jian: An LMI approach to guaranteed cost of linear uncertain time delay systems. Automatica 35 (1999), 1155–1159 | DOI | MR

[16] Mehdi D., Hamid, M. Al, Perrin F.: Robustness and optimality of linear quadratic controller for uncertain systems. Automatica 32 (1996), 1081–1083 | DOI | MR | Zbl

[17] Oliveira M. C. De, Bernussou, J., Geromel J. C.: A new discrete-time robust stability condition. Systems Control Lett. 37 (1999), 261–265 | DOI | MR | Zbl

[18] Pakshin P. V.: Robust decentralized control of systems of random structure. J. Computer and Systems Sciences 42 (2003), 200–204 | MR | Zbl

[19] Park P., Moon Y. S., Kwon W. H.: A stabilizing output feedback linear quadratic control for pure input delayed systems. Internat. J. Control 72 (1999), 385–391 | DOI | MR | Zbl

[20] Takahashi R. H. C., Ramos D. C. W., Peres P. L. D.: Robust control synthesis via a genetic algorithm and LMIS. In: Preprints 15th Triennial World Congress, Barcelona 2002, CD

[21] Tuan H. D., Apkarian P., Hosoe, S., Tuy H.: D. C. optimization approach to robust control: feasibility problems. Internat. J. Control 73 (2000), 89–104 | DOI | MR | Zbl

[22] Veselý V.: Static output feedback controller design. Kybernetika 37 (2001), 205–221 | MR

[23] Veselý V.: Robust output feedback controller design for linear parametric uncertain systems. J. Electrical Engineering 53 (2002), 117–125

[24] Xu S. J., Darouch M.: On the robustness of linear systems with nonlinear uncertain parameters. Automatica 34 (1998), 1005–1008 | DOI | MR

[25] Cao, Yong Yan, Sun, You Xian: Static output feedback simultaneous stabilization: LMI approach. Internat. J. Control 70 (1998), 803–814 | DOI | MR