Weak structure at infinity and row-by-row decoupling for linear delay systems
Kybernetika, Tome 40 (2004) no. 2, pp. 181-195 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

We consider the row-by-row decoupling problem for linear delay systems and show some close connections between the design of a decoupling controller and some particular structures of delay systems, namely the so-called weak structure at infinity. The realization by static state feedback of decoupling precompensators is studied, in particular, generalized state feedback laws which may incorporate derivatives of the delayed new reference.
We consider the row-by-row decoupling problem for linear delay systems and show some close connections between the design of a decoupling controller and some particular structures of delay systems, namely the so-called weak structure at infinity. The realization by static state feedback of decoupling precompensators is studied, in particular, generalized state feedback laws which may incorporate derivatives of the delayed new reference.
Classification : 93B10, 93B52, 93B60, 93C05, 93C23
Keywords: structure at infinity; row-by-row decoupling; delay systems
@article{KYB_2004_40_2_a1,
     author = {Rabah, Rabah and Malabre, Michel},
     title = {Weak structure at infinity and row-by-row decoupling for linear delay systems},
     journal = {Kybernetika},
     pages = {181--195},
     year = {2004},
     volume = {40},
     number = {2},
     mrnumber = {2069177},
     zbl = {1249.93100},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a1/}
}
TY  - JOUR
AU  - Rabah, Rabah
AU  - Malabre, Michel
TI  - Weak structure at infinity and row-by-row decoupling for linear delay systems
JO  - Kybernetika
PY  - 2004
SP  - 181
EP  - 195
VL  - 40
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a1/
LA  - en
ID  - KYB_2004_40_2_a1
ER  - 
%0 Journal Article
%A Rabah, Rabah
%A Malabre, Michel
%T Weak structure at infinity and row-by-row decoupling for linear delay systems
%J Kybernetika
%D 2004
%P 181-195
%V 40
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a1/
%G en
%F KYB_2004_40_2_a1
Rabah, Rabah; Malabre, Michel. Weak structure at infinity and row-by-row decoupling for linear delay systems. Kybernetika, Tome 40 (2004) no. 2, pp. 181-195. http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a1/

[1] Commault C., Dion J.-M., Descusse J., Lafay J. F., Malabre M.: Influence de la structure à l’infini des systèmes linéaires sur la résolution de problèmes de commande. Autom. Prod. Inform. Indust. (Automatic Control-Production Systems) 20 (1986), 207–252 | MR

[2] Descusse J., Dion J.-M.: On the structure at infinity of linear square decoupled systems. IEEE Trans. Automat. Control AC-27 (1982), 971–974 | DOI | MR | Zbl

[3] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 651–659 | DOI

[4] Hautus M. L. J.: The formal Laplace transform for smooth linear systems. In: Proc. Internat. Symposium on Mathematical Systems Theory, Udine, Italy, June 1975 (Lecture Notes in Economics and Mathematical Systems 131), Springer-Verlag, Berlin 1975, pp. 29–47 | MR

[5] Hautus M. L. J.: $(A,B)$-invariant and stabilizability subspaces, a frequency domain description. Automatica 16 (1980), 703–707 | DOI | MR | Zbl

[6] Kailath T.: Linear System. Prentice Hall, Englewood Cliffs, N. J. 1980 | MR | Zbl

[7] Malabre M., Kučera V.: Infinite structure and exact model matching: a geometric approach. IEEE Trans. Automat. Control AC-29 (1984), 226–268 | DOI

[8] Malabre M., Martínez-García: The modified disturbance rejection problem with stability: a structural approach. In: Proc. European Control Conference 2 (1993), pp. 1119–1124

[9] Malabre M., Rabah R.: On infinite zeros for infinite dimensional systems. In: Progress in Systems and Control Theory 3, Realiz. Model. in Syst. Theory, Vol. 1, Birkhaüser, Boston 1990, pp. 19–206 | MR

[10] Malabre M., Rabah R.: Structure at infinity, model matching and disturbance rejection for linear systems with delays. Kybernetika 29 (1993), 485–498 | MR | Zbl

[11] Picard P., Lafay J. F., Kučera V.: Model matching for linear systems with delays. In: Proc. 13th IFAC Congress, San Francisco, Volume D, 1996, pp. 183–188

[12] Rabah R., Malabre M.: Structure at infinity for delay systems revisited. In: IMACS and IEEE-SMC Multiconference CESA’96, Symposium on Modelling, Analysis and Simulation, Lille, France, July 9–12, 1996, pp. 87–90

[13] Rabah R., Malabre M.: A note on decoupling for linear infinite dimensional systems. In: Proc. 4th IFAC Conference on System Structure and Control, Bucharest, October 23–25, 1997, pp. 78–83

[14] Rabah R., Malabre M.: On the structure at infinity of linear delay systems with application to the disturbance decoupling problem. Kybernetika 35 (1999), 668–680 | MR

[15] Rekasius Z. V., Milzareck R. J.: Decoupling without prediction of systems with delays. In: Proc. Joint Automat. Control Conference, San Francisco, CA, 1977

[16] Sename O., Rabah, R., Lafay J. F.: Decoupling without prediction of linear systems with delays: a structural approach. System Control Lett. 25 (1995), 387–395 | DOI | MR | Zbl

[17] Silverman L. M., Kitapçi A.: System structure at infinity. In: Outils et Modèles Mathématiques pour l’Automatique, l’Analyse des Systèmes et le Traitement du Signal, Vol. 3, Colloque National, Belle-Ile, 13–18 septembre, Ed. CNRS, Paris 1983, pp. 413–424 | MR | Zbl

[18] Tzafestas S. G., Paraskevopoulos P. N.: On the decoupling of multivariable control systems with time-delays. Internat. J. Control 17 (1973), 405–415 | DOI | MR | Zbl

[19] Tsoi A. C.: Recent advances in the algebraic system theory of delay differential equations. In: Recent Theoretical Developments in Control (M. J. Gregson, ed.), Academic Press, New York 1978, pp. 67–127 | MR | Zbl

[20] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Springer–Verlag, New York 1985 | MR | Zbl