Keywords: structure at infinity; row-by-row decoupling; delay systems
@article{KYB_2004_40_2_a1,
author = {Rabah, Rabah and Malabre, Michel},
title = {Weak structure at infinity and row-by-row decoupling for linear delay systems},
journal = {Kybernetika},
pages = {181--195},
year = {2004},
volume = {40},
number = {2},
mrnumber = {2069177},
zbl = {1249.93100},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a1/}
}
Rabah, Rabah; Malabre, Michel. Weak structure at infinity and row-by-row decoupling for linear delay systems. Kybernetika, Tome 40 (2004) no. 2, pp. 181-195. http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a1/
[1] Commault C., Dion J.-M., Descusse J., Lafay J. F., Malabre M.: Influence de la structure à l’infini des systèmes linéaires sur la résolution de problèmes de commande. Autom. Prod. Inform. Indust. (Automatic Control-Production Systems) 20 (1986), 207–252 | MR
[2] Descusse J., Dion J.-M.: On the structure at infinity of linear square decoupled systems. IEEE Trans. Automat. Control AC-27 (1982), 971–974 | DOI | MR | Zbl
[3] Falb P. L., Wolovich W. A.: Decoupling in the design and synthesis of multivariable control systems. IEEE Trans. Automat. Control AC-12 (1967), 651–659 | DOI
[4] Hautus M. L. J.: The formal Laplace transform for smooth linear systems. In: Proc. Internat. Symposium on Mathematical Systems Theory, Udine, Italy, June 1975 (Lecture Notes in Economics and Mathematical Systems 131), Springer-Verlag, Berlin 1975, pp. 29–47 | MR
[5] Hautus M. L. J.: $(A,B)$-invariant and stabilizability subspaces, a frequency domain description. Automatica 16 (1980), 703–707 | DOI | MR | Zbl
[6] Kailath T.: Linear System. Prentice Hall, Englewood Cliffs, N. J. 1980 | MR | Zbl
[7] Malabre M., Kučera V.: Infinite structure and exact model matching: a geometric approach. IEEE Trans. Automat. Control AC-29 (1984), 226–268 | DOI
[8] Malabre M., Martínez-García: The modified disturbance rejection problem with stability: a structural approach. In: Proc. European Control Conference 2 (1993), pp. 1119–1124
[9] Malabre M., Rabah R.: On infinite zeros for infinite dimensional systems. In: Progress in Systems and Control Theory 3, Realiz. Model. in Syst. Theory, Vol. 1, Birkhaüser, Boston 1990, pp. 19–206 | MR
[10] Malabre M., Rabah R.: Structure at infinity, model matching and disturbance rejection for linear systems with delays. Kybernetika 29 (1993), 485–498 | MR | Zbl
[11] Picard P., Lafay J. F., Kučera V.: Model matching for linear systems with delays. In: Proc. 13th IFAC Congress, San Francisco, Volume D, 1996, pp. 183–188
[12] Rabah R., Malabre M.: Structure at infinity for delay systems revisited. In: IMACS and IEEE-SMC Multiconference CESA’96, Symposium on Modelling, Analysis and Simulation, Lille, France, July 9–12, 1996, pp. 87–90
[13] Rabah R., Malabre M.: A note on decoupling for linear infinite dimensional systems. In: Proc. 4th IFAC Conference on System Structure and Control, Bucharest, October 23–25, 1997, pp. 78–83
[14] Rabah R., Malabre M.: On the structure at infinity of linear delay systems with application to the disturbance decoupling problem. Kybernetika 35 (1999), 668–680 | MR
[15] Rekasius Z. V., Milzareck R. J.: Decoupling without prediction of systems with delays. In: Proc. Joint Automat. Control Conference, San Francisco, CA, 1977
[16] Sename O., Rabah, R., Lafay J. F.: Decoupling without prediction of linear systems with delays: a structural approach. System Control Lett. 25 (1995), 387–395 | DOI | MR | Zbl
[17] Silverman L. M., Kitapçi A.: System structure at infinity. In: Outils et Modèles Mathématiques pour l’Automatique, l’Analyse des Systèmes et le Traitement du Signal, Vol. 3, Colloque National, Belle-Ile, 13–18 septembre, Ed. CNRS, Paris 1983, pp. 413–424 | MR | Zbl
[18] Tzafestas S. G., Paraskevopoulos P. N.: On the decoupling of multivariable control systems with time-delays. Internat. J. Control 17 (1973), 405–415 | DOI | MR | Zbl
[19] Tsoi A. C.: Recent advances in the algebraic system theory of delay differential equations. In: Recent Theoretical Developments in Control (M. J. Gregson, ed.), Academic Press, New York 1978, pp. 67–127 | MR | Zbl
[20] Wonham W. M.: Linear Multivariable Control: A Geometric Approach. Springer–Verlag, New York 1985 | MR | Zbl