Keywords: invariant spaces; reachability; geometric control; rational sets; Presburger arithmetics; max-plus algebra; discrete event systems
@article{KYB_2004_40_2_a0,
author = {Gaubert, St\'ephane and Katz, Ricardo},
title = {Rational semimodules over the max-plus semiring and geometric approach to discrete event systems},
journal = {Kybernetika},
pages = {153--180},
year = {2004},
volume = {40},
number = {2},
mrnumber = {2069176},
zbl = {1249.93125},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a0/}
}
TY - JOUR AU - Gaubert, Stéphane AU - Katz, Ricardo TI - Rational semimodules over the max-plus semiring and geometric approach to discrete event systems JO - Kybernetika PY - 2004 SP - 153 EP - 180 VL - 40 IS - 2 UR - http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a0/ LA - en ID - KYB_2004_40_2_a0 ER -
Gaubert, Stéphane; Katz, Ricardo. Rational semimodules over the max-plus semiring and geometric approach to discrete event systems. Kybernetika, Tome 40 (2004) no. 2, pp. 153-180. http://geodesic.mathdoc.fr/item/KYB_2004_40_2_a0/
[1] Baccelli F., Cohen G., Olsder, G., Quadrat J.: Synchronization and Linearity. Wiley, New York 1992 | MR | Zbl
[2] Berstel J.: Transductions and Context-Free Languages. Teubner, Stuttgart 1979 | MR | Zbl
[3] Berstel J., Reutenauer C.: Rational Series and their Languages. Springer, New York 1988 | MR | Zbl
[4] Bés A.: A survey of arithmetical definability: A tribute to Maurice Boffa. Soc. Math. Belgique 2002, pp. 1–54 | MR
[5] Butkovič P.: Strong regularity of matrices – a survey of results. Discrete Applied Mathematics 48 (1994), 45–68 | DOI | MR | Zbl
[6] Butkovič P., Cuninghame-Green R.: The equation $A\otimes x=B\otimes y$ over $({\mathbb{R}}\cup \lbrace -\infty \rbrace ,\max ,+)$. Theor. Comp. Sci. 48 (2003), 1, 3–12 | MR
[7] Butkovič P., Hegedüs G.: An elimination method for finding all solutions of the system of linear equations over an extremal algebra. Ekonom.-Mat. obzor 20 (1984), 2, 203–215 | MR | Zbl
[8] Cochet-Terrasson J., Gaubert, S., Gunawardena J.: A constructive fixed point theorem for min-max functions: Dynamics and Stability of Systems 14 (1999), 4, 407–43. | DOI | MR
[9] Cohen G., Gaubert, S., Quadrat J.: Kernels, images and projections in dioids. In: 3rd Workshop on Discrete Event Systems (WODES’96), IEE Edinburgh, August 1996, pp. 151–158
[10] Cohen G., Gaubert, S., Quadrat J.: Linear projectors in the max-plus algebra: In: Proc. IEEE Mediterranean Conference, Cyprus, 1997, CDROM
[11] Cohen G., Gaubert, S., Quadrat J.: Max-plus algebra and system theory: where we are and where to go now. Annual Reviews in Control 23 (1999), 207–219 | DOI
[12] Cohen G., Gaubert, S., Quadrat J.: Duality and separation theorem in idempotent semimodules. Linear Algebra and Appl. 279 (2004), 395–422. Also e-print arXiv:math.FA/0212294 | DOI | MR
[13] Cohen G., Moller P., Quadrat, J., Viot M.: Algebraic tools for the performance evaluation of discrete event systems: IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1, 39–5.
[14] Conway J.: Regular Algebra and Finite Machines. Chapman and Hall, London 1971 | Zbl
[15] Cuninghame-Green R.: Minimax Algebra. (Lecture Notes in Economics and Mathematical Systems 166.) Springer, Berlin 1976 | MR | Zbl
[16] Eilenberg S., Schützenberger M.: Rational sets in commutative monoids: J. Algebra 13 (1969), 1, 173–191 | DOI | MR
[17] Gaubert S.: Théorie des systèmes linéaires dans les dioïdes. Thèse, École des Mines de Paris, July 1992
[18] Gaubert S.: Rational series over dioids and discrete event systems. In: Proc. 11th Conference on Analysis and Optimization of Systems – Discrete Event Systems. (Lecture Notes in Control and Inform. Sciences 199.) Sophia Antipolis, June 1994. Springer, Berlin 1995
[19] Gaubert S.: Performance evaluation of (max,+) automata. IEEE Trans. Automat. Control 40 (1995), 12, 2014–2025 | DOI | MR | Zbl
[20] Gaubert S.: Exotic semirings: Examples and general results: Support de cours de la 26$^{\text{ième}}$ École de Printemps d’Informatique Théorique, Noirmoutier, 199.
[21] Gaubert S., Gunawardena J.: The duality theorem for min-max functions: C. R. Acad. Sci. 326 (1998), 43–48 | DOI | MR
[22] Gaubert S., Katz R.: Reachability Problems for Products of Matrices in Semirings. Research Report 4944, INRIA, September 2003. Also e-print arXiv:math.OC/0310028. To appear in Internat. J. Algebra and Comput | MR | Zbl
[23] Gaubert S., Plus M.: Methods and applications of (max,+) linear algebra. In: 14th Symposium on Theoretical Aspects of Computer Science (STACS’97), Lübeck, March 1997 (R. Reischuk and M. Morvan, eds., Lecture Notes in Computer Science 1200), Springer, Berlin 1998, pp. 261–282 | MR
[24] Ginsburg S., Spanier E. H.: Semigroups, Presburger formulas, and languages. Pacific J. Math. 16 (1966), 2, 3–12 | DOI | MR | Zbl
[25] Gunawardena J., ed.: Idempotency. (Publications of the Isaac Newton Institute.) Cambridge University Press, Cambridge 1998 | MR | Zbl
[26] Helbig S.: On Caratheodory’s and Kreĭn-Milman’s theorems in fully ordered groups. Comment. Math. Univ. Carolin. 29 (1988), 1, 157–167 | MR | Zbl
[27] Katz R.: Problemas de alcanzabilidad e invariancia en el álgebra max-plus. Ph.D. Thesis, University of Rosario, November 2003
[28] Klimann I.: Langages, séries et contrôle de trajectoires. Thèse, Université Paris 7, 1999
[29] Klimann I.: A solution to the problem of $(A,B)$-invariance for series: Theoret. Comput. Sci. 293 (2003), 1, 115–139 | DOI | MR
[30] Kolokoltsov V.: Linear additive and homogeneous operators. In: Idempotent Analysis (Advances in Soviet Mathematics 13), Amer. Math. Soc., Providence, RI 1992 | MR | Zbl
[31] Krob D.: The equality problem for rational series with multiplicities in the tropical semiring is undecidable. Internat. J. Algebra and Comput. 4 (1994), 3, 405–425 | DOI | MR | Zbl
[32] Krob D.: Some consequences of a Fatou property of the tropical semiring. J. Pure and Applied Algebra 93 (1994), 231–249 | DOI | MR | Zbl
[33] Krob D., Rigny A. Bonnier: A complete system of identities for one letter rational expressions with multiplicities in the tropical semiring. J. Pure Appl. Algebra 134 (1994), 27–50 | MR
[34] Litvinov G., Maslov, V., Shpiz G.: Idempotent functional analysis: an algebraical approach. Math. Notes 69 (2001), 5, 696–729. Also e-print arXiv:math.FA/0009128 | DOI | MR
[35] Mairesse J.: A graphical approach of the spectral theory in the (max,+) algebra. IEEE Trans. Automat. Control 40 (1995), 1783–1789 | DOI | MR | Zbl
[36] Moller P.: Théorie algébrique des Systèmes à Événements Discrets. Thèse, École des Mines de Paris, 1988
[37] Oppen D. C.: A $2^{2^{2^{pn}}}$ upper bound on the complexity of Presburger arithmetic. J. Comput. System Sci. 16 (1978), 323–332 | DOI | MR
[38] Pin J.-E.: Tropical semirings: In: Idempotency (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 50–69 | MR
[39] Plus M.: Max-plus toolbox of scilab: Available from the contrib section of http:--www-rocq</b>. inria.fr/scilab, 1998
[40] Samborskiĭ S. N., Shpiz G. B.: Convex sets in the semimodule of bounded functions: In: Idempotent Analysis, pp. 135–137. Amer. Math. Soc., Providence, RI 1992 | MR
[41] Schrijver A.: Theory of Linear and Integer Programming. Wiley, New York 1988 | MR | Zbl
[42] Simon I.: Limited subsets of the free monoid. In: 19th Annual Symposium on Foundations of Computer Science 1978, pp. 143–150 | MR
[43] Simon I.: The nondeterministic complexity of a finite automaton. In: Mots – Mélange offert à M. P. Schutzenberger (M. Lothaire, ed.), Hermes, Paris 1990, pp. 384–400 | MR
[44] Wagneur E.: Moduloids and pseudomodules. 1. dimension theory. Discrete Math. 98 (1991), 57–73 | DOI | MR | Zbl
[45] Walkup E., Borriello G.: A general linear max-plus solution technique. In: Idempotency (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998, pp. 406–415 | MR | Zbl
[46] Wonham W.: Linear Multivariable Control: A Geometric Approach. Third edition. Springer, Berlin 1985 | MR | Zbl
[47] Zimmermann K.: A general separation theorem in extremal algebras. Ekonom.-Mat. obzor 13 (1977), 2, 179–201 | MR | Zbl