Keywords: Bell inequality; fuzzy set; quasi-copula; triangular norm
@article{KYB_2004_40_1_a6,
author = {Janssens, Saskia and De Baets, Bernard and De Meyer, Hans},
title = {Bell-type inequalities for parametric families of triangular norms},
journal = {Kybernetika},
pages = {89--106},
year = {2004},
volume = {40},
number = {1},
mrnumber = {2068600},
zbl = {1249.54015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a6/}
}
Janssens, Saskia; De Baets, Bernard; De Meyer, Hans. Bell-type inequalities for parametric families of triangular norms. Kybernetika, Tome 40 (2004) no. 1, pp. 89-106. http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a6/
[1] Bell J. S.: On the Einstein–Podolsky–Rosen paradox. Physics 1 (1964), 195–200
[2] Genest C., Molina L., Lallena, L., Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 | DOI | MR | Zbl
[3] Janssens S., Baets, B. De, Meyer H. De: Bell-type inequalities for commutative quasi-copulas. Fuzzy Sets and Systems, submitted
[4] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 | MR | Zbl
[5] Ling C. M.: Representation of associative functions. Publ. Math. Debrecen 12 (1965), 189–212 | MR
[6] Nelsen R.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer–Verlag, Berlin 1999 | DOI | MR | Zbl
[7] Pitowsky I.: Quantum Probability – Quantum Logic. (Lecture Notes in Physics 321.) Springer–Verlag, Berlin 1989 | MR | Zbl
[8] Pykacz J., D’Hooghe B.: Bell-type inequalities in fuzzy probability calculus. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 9 (2001), 263–275 | DOI | MR | Zbl