Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum
Kybernetika, Tome 40 (2004) no. 1, pp. 71-88 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Transitivity is a fundamental notion in preference modelling. In this work we study this property in the framework of additive fuzzy preference structures. In particular, we depart from a large preference relation that is transitive w.r.t. the nilpotent minimum t-norm and decompose it into an indifference and strict preference relation by means of generators based on t-norms, i. e. using a Frank t-norm as indifference generator. We identify the strongest type of transitivity these indifference and strict preference components show, both in general and for the important class of weakly complete large preference relations.
Transitivity is a fundamental notion in preference modelling. In this work we study this property in the framework of additive fuzzy preference structures. In particular, we depart from a large preference relation that is transitive w.r.t. the nilpotent minimum t-norm and decompose it into an indifference and strict preference relation by means of generators based on t-norms, i. e. using a Frank t-norm as indifference generator. We identify the strongest type of transitivity these indifference and strict preference components show, both in general and for the important class of weakly complete large preference relations.
Classification : 03E72, 04A72, 06F05, 68T37, 91B08
Keywords: fuzzy relation; indifference; nilpotent minimum; strict preference; transitivity
@article{KYB_2004_40_1_a5,
     author = {D{\'\i}az, Susana and Montes, Susana and De Baets, Bernard},
     title = {Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum},
     journal = {Kybernetika},
     pages = {71--88},
     year = {2004},
     volume = {40},
     number = {1},
     mrnumber = {2068599},
     zbl = {1249.91024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a5/}
}
TY  - JOUR
AU  - Díaz, Susana
AU  - Montes, Susana
AU  - De Baets, Bernard
TI  - Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum
JO  - Kybernetika
PY  - 2004
SP  - 71
EP  - 88
VL  - 40
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a5/
LA  - en
ID  - KYB_2004_40_1_a5
ER  - 
%0 Journal Article
%A Díaz, Susana
%A Montes, Susana
%A De Baets, Bernard
%T Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum
%J Kybernetika
%D 2004
%P 71-88
%V 40
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a5/
%G en
%F KYB_2004_40_1_a5
Díaz, Susana; Montes, Susana; De Baets, Bernard. Transitive decomposition of fuzzy preference relations: the case of nilpotent minimum. Kybernetika, Tome 40 (2004) no. 1, pp. 71-88. http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a5/

[1] Butnariu D., Klement E. P.: Triangular Norm-Based Measures and Games with Fuzzy Coalitions. Kluwer, Dordrecht 1993 | MR | Zbl

[2] Dasgupta M., Deb R.: Transitivity and fuzzy preferences. Social Choice and Welfare 13 (1996), 305–318 | DOI | MR | Zbl

[3] Dasgupta M., Deb R.: Factoring fuzzy transitivity. Fuzzy Sets and Systems 118 (2001), 489–502 | MR | Zbl

[4] Baets B. De, Fodor J.: Twenty years of fuzzy preference structures (1978–1997). JORBEL 37 (1997), 61–82 | MR | Zbl

[5] Baets B. De, Fodor J.: Generator triplets of additive fuzzy preference structures. In: Proc. Sixth Internat. Workshop on Relational Methods in Computer Science, Tilburg, The Netherlands, 2001, pp. 306–315

[6] Baets B. De, Walle, B. Van De, Kerre E.: Fuzzy preference structures without incomparability. Fuzzy Sets and Systems 76 (1995), 333–348 | DOI | MR | Zbl

[7] Díaz S., Baets, B. De, Montes S.: On the transitivity of fuzzy indifference relations. Fuzzy Sets and Systems – IFSA 2003 (T. Bilgiç, B. DeBaets, and O. Kayak, eds., Lecture Notes in Computer Science 2715.) Springer–Verlag, Berlin 2003, pp. 87–94 | Zbl

[8] Díaz S., Baets, B. De, Montes S.: $T$-Ferrers relations versus $T$-biorders. Fuzzy Sets and Systems – IFSA 2003 (T. Bilgiç, B. DeBaets, and O. Kayak, eds., Lecture Notes in Computer Science 2715.) Springer–Verlag, Berlin 2003, pp. 269–276 | Zbl

[9] Fodor J.: Contrapositive symmetry of fuzzy implications. Fuzzy Sets and Systems 69 (1995), 141–156 | DOI | MR | Zbl

[10] Fodor J., Roubens M.: Valued preference structures. European J. Oper. Res. 79 (1994), 277–286 | DOI | Zbl

[11] Fodor J., Roubens M.: Fuzzy Preference Modelling and Multicriteria Decision Support. Kluwer, Dordrecht 1994 | Zbl

[12] Jenei S.: Structure of left-continuous triangular norms with strong induced negations. (I) Rotation construction. J. Appl. Non-Classical Logics 10 (2000), 83–92 | DOI | MR | Zbl

[13] Jenei S.: Structure of left-continuous triangular norms with strong induced negations. (II) Rotation-annihilation construction. J. Appl. Non-Classical Logics 11 (2001), 351–366 | DOI | MR | Zbl

[14] Jenei S.: Structure of left-continuous triangular norms with strong induced negations. (III) Construction and decomposition. Fuzzy Sets and Systems 128 (2002), 197–208 | MR | Zbl

[15] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 | MR | Zbl

[16] Perny P.: Modélisation, agrégation et expoitation des préférences floues dans une problématique de rangement. Ph.D. Thesis, Université Paris Dauphine, Paris 1992

[17] Perny P., Roy B.: The use of fuzzy outranking relations in preference modelling. Fuzzy Sets and Systems 49 (1992), 33–53 | DOI | MR | Zbl

[18] Roubens M., Vincke, Ph.: Preference Modelling. Springer–Verlag, Berlin 1985 | MR | Zbl

[19] Walle B. Van De: Het bestaan en de karakterisatie van vaagpreferentiestrukturen. Ph.D. Thesis, Ghent University, 1996