Keywords: aggregation; Choquet and Sugenointegrals; multi-step integral; twofold integral
@article{KYB_2004_40_1_a3,
author = {Narukawa, Yasuo and Torra, Vicen\c{c}},
title = {Twofold integral and multi-step {Choquet} integral},
journal = {Kybernetika},
pages = {39--50},
year = {2004},
volume = {40},
number = {1},
mrnumber = {2068597},
zbl = {1249.28027},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a3/}
}
Narukawa, Yasuo; Torra, Vicenç. Twofold integral and multi-step Choquet integral. Kybernetika, Tome 40 (2004) no. 1, pp. 39-50. http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a3/
[1] Benvenuti P., Mesiar R.: A note on Sugeno and Choquet integrals. In: Proc. 8th Internat. Conference Information Processing and Management of Uncertainty in Knowledge-based Systems, 2000, pp. 582–585
[2] Benvenuti P., Mesiar, R., Vivona D.: Monotone set functions-based integrals. In: Handbook of Measure Theory (E. Pap, ed.), Elsevier, 2002 | MR | Zbl
[3] Calvo T., Mesiarová, A., Valášková L.: Construction of aggregation operators – new composition method. Kybernetika 39 (2003), 643–650 | MR
[4] Mesiar R., Vivona D.: Two-step integral with respect to fuzzy measure. Tatra Mt. Math. Publ. 16 (1999), 359–368 | MR | Zbl
[5] Murofushi T., Sugeno M.: An interpretation of fuzzy measures and the Choquet integral as an integral with respect to a fuzzy measure. Fuzzy Sets and Systems 29 (1989), 201–227 | MR | Zbl
[6] Murofushi T., Narukawa Y.: A characterization of multi-step discrete Choquet integral. In: 6th Internat. Conference Fuzzy Sets Theory and Its Applications, Abstracts, 2002 p. 94
[7] Murofushi T., Narukawa Y.: A characterization of multi-level discrete Choquet integral over a finite set (in Japanese). In: Proc. 7th Workshop on Evaluation of Heart and Mind 2002, pp. 33–36
[8] Murofushi T., Sugeno M.: Fuzzy t-conorm integral with respect to fuzzy measures: generalization of Sugeno integral and Choquet integral. Fuzzy Sets and Systems 42 (1991), 57–71 | MR | Zbl
[9] Murofushi T., Sugeno, M., Fujimoto K.: Separated hierarchical decomposition of the Choquet integral. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997), 563–585 | DOI | MR | Zbl
[10] Narukawa Y., Murofushi T.: The $n$-step Choquet integral on finite spaces. In: Proc. 9th Internat. Conference Information Processing and Management of Uncertainty in Knowledge-based Systems, 2002, pp. 539–543
[11] Narukawa Y., Torra V.: Twofold integral: a graphical interpretation and its generalization to universal sets. In: EUSFLAT 2003, Zittau, Germany, pp. 718–722
[12] Ovchinnikov S.: Max-min representation of piecewise linear functions. Contributions to Algebra and Geometry 43 (2002), 297–302 | MR | Zbl
[13] Ovchinnikov S.: Piecewise linear aggregation functions. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems 10 (2002), 17–24 | DOI | MR | Zbl
[14] Sugeno M.: Theory of Fuzzy Integrals and Its Application. Ph.D. Thesis, Tokyo Institute of Technology, 1974
[15] Sugeno M., Fujimoto, K., Murofushi T.: Hierarchical decomposition of Choquet integral models. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems 3 (1995), 1–15 | DOI | MR
[16] Torra V.: Twofold integral: A Choquet integral and Sugeno integral generalization. Butlletí de l’Associació Catalana d’Intel$\cdot $ligència Artificial 29 (2003), 14–20 (in Catalan). Preliminary version: IIIA Research Report TR-2003-08 (in English)