Keywords: t-norm; T-conorm; idempotent uninorm; aggregation; implication function
@article{KYB_2004_40_1_a2,
author = {Ruiz, Daniel and Torrens, Joan},
title = {Residual implications and co-implications from idempotent uninorms},
journal = {Kybernetika},
pages = {21--38},
year = {2004},
volume = {40},
number = {1},
mrnumber = {2068596},
zbl = {1249.94095},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a2/}
}
Ruiz, Daniel; Torrens, Joan. Residual implications and co-implications from idempotent uninorms. Kybernetika, Tome 40 (2004) no. 1, pp. 21-38. http://geodesic.mathdoc.fr/item/KYB_2004_40_1_a2/
[1] Bustince H., Burillo, P., Soria F.: Automorphisms, negations and implication operators. Fuzzy Sets and Systems 134 (2003), 209–229 | DOI | MR
[2] Czogala E., Drewniak J.: Associative monotonic operations in fuzzy set theory. Fuzzy Sets and Systems 12 (1984), 249–269 | DOI | MR | Zbl
[3] Baets B. De: An order-theoretic approach to solving sup-T equations. In: Fuzzy Set Theory and Advanced Mathematical Applications (D. Ruan, ed.), Kluwer, Dordrecht 1995, pp. 67–87 | Zbl
[4] Baets B. De: Uninorms: the known classes. In: Proc. Third International FLINS Workshop on Fuzzy Logic and Intelligent Technologies for Nuclear Science and Industry. World Scientific, Antwerp 1998
[5] Baets B. De: Idempotent uninorms. European J. Oper. Res. 118 (1999), 631–642 | DOI | Zbl
[6] Baets B. De: Generalized idempotence in fuzzy mathematical morphology. In: Fuzzy Techniques in Image Processing (E. E. Kerre and M. Nachtegael, eds.), Heidelberg 2000, pp. 58–75
[7] Baets B. De, Fodor J. C.: On the structure of uninorms and their residual implicators. In: Proc. 18th Linz Seminar on Fuzzy Set Theory, Linz, Austria 1997, pp. 81–87
[8] Baets B. De, Fodor J. C.: Residual operators of representable uninorms. In: Proc. Fifth European Congress on Intelligent Techniques and Soft Computing, Volume 1 (H.-J. Zimmermann, ed.), ELITE, Aachen 1997, pp. 52–56
[9] Baets B. De, Fodor J. C.: Residual operators of uninorms. Soft Computing 3 (1999), 89–100 | DOI
[10] Baets B. De, Kwasnikowska, N., Kerre E.: Fuzzy Morphology based on uninorms. In: Proc. Seventh IFSA World Congress, Prague 1997, pp. 215–220
[11] Fodor J. C., Yager R. R., Rybalov A.: Structure of Uninorms. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997), 411–427 | DOI | MR | Zbl
[12] Fodor J. C.: Contrapositive symmetry on fuzzy implications. Fuzzy Sets and Systems 69 (1995), 141–156 | DOI | MR
[13] González M., Ruiz, D., Torrens J.: Algebraic properties of fuzzy morphological operators based on uninorms. In: Artificial Intelligence Research and Development (I. Aguiló, L. Valverde, and M. T. Escrig, eds.), IOS Press, Amsterdam 2003, pp. 27–38
[14] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, London 2000 | MR | Zbl
[15] Martín J., Mayor, G., Torrens J.: On locally internal monotonic operations. Fuzzy Sets and Systems 137 (2003), 27–42 | MR | Zbl
[16] Mas M., Monserrat, M., Torrens J.: On left and right uninorms. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 9 (2002), 491–507 | DOI | MR | Zbl
[17] Nachtegael M., Kerre E. E.: Classical and fuzzy approaches towards mathematical morphology. In: Fuzzy Techniques in Image Processing (E. E. Kerre and M. Nachtegael, eds.), Heidelberg 2000, pp. 3–57
[18] Ruiz D., Torrens J.: Condición de modularidad para uninormas idempotentes. In: Proc. 11th Estylf, Leon, Spain 2002, pp. 177–182
[19] Ruiz D., Torrens J.: Distributive idempotent uninorms. Internat. J. Uncertainty, Fuzziness and Knowledge-based Systems 11 (2003), 413–428 | DOI | MR | Zbl
[20] Ruiz D., Torrens J.: Residual implications and co–implications from idempotent uninorms. In: Proc. Summer School on Aggregation Operators 2003 (AGOP’2003), Alcalá de Henares, Spain 2003, pp. 149–154 | MR
[21] Yager R. R., Rybalov A.: Uninorm aggregation operators. Fuzzy Sets and Systems 80 (1996), 111–120 | DOI | MR | Zbl