A further investigation for Egoroff's theorem with respect to monotone set functions
Kybernetika, Tome 39 (2003) no. 6, pp. 753-760 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we investigate Egoroff’s theorem with respect to monotone set function, and show that a necessary and sufficient condition that Egoroff’s theorem remain valid for monotone set function is that the monotone set function fulfill condition (E). Therefore Egoroff’s theorem for non-additive measure is formulated in full generality.
In this paper, we investigate Egoroff’s theorem with respect to monotone set function, and show that a necessary and sufficient condition that Egoroff’s theorem remain valid for monotone set function is that the monotone set function fulfill condition (E). Therefore Egoroff’s theorem for non-additive measure is formulated in full generality.
Classification : 06F05, 15A06, 26E25, 28A10, 28A20, 37M99, 93B25
Keywords: non-additive measure; monotone set function; condition (E); Egoroff's theorem
@article{KYB_2003_39_6_a6,
     author = {Li, Jun},
     title = {A further investigation for {Egoroff's} theorem with respect to monotone set functions},
     journal = {Kybernetika},
     pages = {753--760},
     year = {2003},
     volume = {39},
     number = {6},
     mrnumber = {2035649},
     zbl = {1249.93044},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a6/}
}
TY  - JOUR
AU  - Li, Jun
TI  - A further investigation for Egoroff's theorem with respect to monotone set functions
JO  - Kybernetika
PY  - 2003
SP  - 753
EP  - 760
VL  - 39
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a6/
LA  - en
ID  - KYB_2003_39_6_a6
ER  - 
%0 Journal Article
%A Li, Jun
%T A further investigation for Egoroff's theorem with respect to monotone set functions
%J Kybernetika
%D 2003
%P 753-760
%V 39
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a6/
%G en
%F KYB_2003_39_6_a6
Li, Jun. A further investigation for Egoroff's theorem with respect to monotone set functions. Kybernetika, Tome 39 (2003) no. 6, pp. 753-760. http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a6/

[1] Halmos P. R.: Measure Theory. Van Nostrand, New York 1968 | MR | Zbl

[2] Li J., Yasuda M., Jiang Q., Suzuki H., Wang, Z., Klir G. J.: Convergence of sequence of measurable functions on fuzzy measure space. Fuzzy Sets and Systems 87 (1997), 317–323 | MR

[3] Li J.: On Egoroff’s theorems on fuzzy measure space. Fuzzy Sets and Systems 135 (2003), 367–375 | DOI | MR

[4] Li J.: Order continuity of monotone set function and convergence of measurable functions sequence. Applied Mathematics and Computation 135 (2003), 211–218 | DOI | MR

[5] Li J., Yasuda M.: Egoroff’s theorems on monotone non-additive measure space. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems (to appear) | MR

[6] Pap E.: Null-additive Set Functions. Kluwer, Dordrecht 1995 | MR | Zbl

[7] Ralescu D., Adams G.: The fuzzy integral. J. Math. Anal. Appl. 75 (1980), 562–570 | DOI | MR | Zbl

[8] Taylor S. J.: An alternative form of Egoroff’s theorem. Fundamenta Mathematicae 48 (1960), 169–174 | MR | Zbl

[9] Wagner E., Wilczyński W.: Convergence almost everywhere of sequences of measurable functions. Colloquium Mathematicum 45 (1981), 119–124 | MR | Zbl

[10] Wang Z.: The autocontinuity of set function and the fuzzy integral. J. Math. Anal. Appl. 99 (1984), 195–218 | DOI | MR | Zbl

[11] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 | MR | Zbl