Keywords: non-additive measure; monotone set function; condition (E); Egoroff's theorem
@article{KYB_2003_39_6_a6,
author = {Li, Jun},
title = {A further investigation for {Egoroff's} theorem with respect to monotone set functions},
journal = {Kybernetika},
pages = {753--760},
year = {2003},
volume = {39},
number = {6},
mrnumber = {2035649},
zbl = {1249.93044},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a6/}
}
Li, Jun. A further investigation for Egoroff's theorem with respect to monotone set functions. Kybernetika, Tome 39 (2003) no. 6, pp. 753-760. http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a6/
[1] Halmos P. R.: Measure Theory. Van Nostrand, New York 1968 | MR | Zbl
[2] Li J., Yasuda M., Jiang Q., Suzuki H., Wang, Z., Klir G. J.: Convergence of sequence of measurable functions on fuzzy measure space. Fuzzy Sets and Systems 87 (1997), 317–323 | MR
[3] Li J.: On Egoroff’s theorems on fuzzy measure space. Fuzzy Sets and Systems 135 (2003), 367–375 | DOI | MR
[4] Li J.: Order continuity of monotone set function and convergence of measurable functions sequence. Applied Mathematics and Computation 135 (2003), 211–218 | DOI | MR
[5] Li J., Yasuda M.: Egoroff’s theorems on monotone non-additive measure space. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems (to appear) | MR
[6] Pap E.: Null-additive Set Functions. Kluwer, Dordrecht 1995 | MR | Zbl
[7] Ralescu D., Adams G.: The fuzzy integral. J. Math. Anal. Appl. 75 (1980), 562–570 | DOI | MR | Zbl
[8] Taylor S. J.: An alternative form of Egoroff’s theorem. Fundamenta Mathematicae 48 (1960), 169–174 | MR | Zbl
[9] Wagner E., Wilczyński W.: Convergence almost everywhere of sequences of measurable functions. Colloquium Mathematicum 45 (1981), 119–124 | MR | Zbl
[10] Wang Z.: The autocontinuity of set function and the fuzzy integral. J. Math. Anal. Appl. 99 (1984), 195–218 | DOI | MR | Zbl
[11] Wang Z., Klir G. J.: Fuzzy Measure Theory. Plenum Press, New York 1992 | MR | Zbl