Keywords: $K_{\phi }$-divergence; goodness-of-fit; minimum $K_{\phi }$-divergence estimate
@article{KYB_2003_39_6_a5,
author = {P\'erez, Teresa and Pardo, Julio A.},
title = {Goodness-of-fit tests based on $K_\phi$-divergence},
journal = {Kybernetika},
pages = {739--752},
year = {2003},
volume = {39},
number = {6},
mrnumber = {2035648},
zbl = {1243.62062},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a5/}
}
Pérez, Teresa; Pardo, Julio A. Goodness-of-fit tests based on $K_\phi$-divergence. Kybernetika, Tome 39 (2003) no. 6, pp. 739-752. http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a5/
[1] Birch N. W.: A new proof of the Pearson-Fisher theorem. Ann. Math. Statist. 35(1964), 817–824 | DOI | MR | Zbl
[2] Bishop Y. M. M., Fienberg S. E., Holland P. W.: Discrete Multivariate Analysis: Theory and Practice. MIT Press, Cambridge, MA 1975 | MR | Zbl
[3] Burbea J.: J-divergences and related topics. Encyclopedia Statist. Sci. 44 (1983), 290–296
[4] Burbea J., Rao C. R.: On the convexity of some divergence measures based on entropy functions. IEEE Trans. Inform. Theory 28 (1982), 489–495 | DOI | MR | Zbl
[5] Cressie N. C. T. R.: Multinomial Goodness-of-fit Tests. J. Roy. Statist. Soc. Ser. B 46 (1984), 440–464 | MR | Zbl
[6] Csiszár I.: Information-type measures of difference of probability distributions and indirect observations. Studia Sci. Math. Hungar. 2 (1967), 299–318 | MR
[7] Fraser D. A. S.: Nonparametric methods in Statistics. Wiley, New York 1957 | MR | Zbl
[8] Fryer J. C., Robertson C. A.: A comparison of some methods for estimating mixed normal distributions. Biometrika 59 (1972), 639–648 | DOI | MR | Zbl
[9] Morales D., Pardo, L., Vajda I.: Asymptotic divergence of estimates of discrete distributions. J. Statist. Plann. Inference 48 (1995), 347–369 | DOI | MR | Zbl
[10] Pardo M. C.: On Burbea-Rao divergence based goodness-of-fit tests for multinomial models. J. Multivariate Anal. 69 (1999), 65–87 | DOI | MR | Zbl
[11] Pérez T., Pardo J. A.: The $K_{\phi }$ -divergence statistics for categorical data problem. Submitted
[12] Pérez T., Pardo J. A.: Minimum $K_{\phi }$ -divergence estimator. Appl. Math. Lett. (to appear) | MR | Zbl
[13] Rao C. R.: Diversity and dissimilarity coefficients: a unified approach. J. Theoret. Population Biology 21 (1982), 24–43 | DOI | MR | Zbl
[14] Rao J. N. K., Scott A. J.: The analysis of categorical data from complex sample surveys: chi-squared tests for goodness of fit and independence in two-way tables. J. Amer. Statist. Assoc. 76 (1981), 221–230 | DOI | MR | Zbl
[15] Read T. R. C., Cressie N. A. C.: Goodness of fit Statistics for discrete multivariate data. Springer–Verlag, Berlin 1988 | MR | Zbl
[16] Vajda T., Vašek K.: Majorization, concave entropies, and comparison of experiments. Prob. Control Inform. Theory 14 (1985), 105–115 | MR
[17] Zografos K., Ferentinos, K., Papaioannou T.: $\varphi $ -divergence statistics: sampling properties and multinomial goodness of fit divergence tests. Comm. Statist. Theory Methods 19 (1990), 5, 1785–1802 | DOI | MR