Keywords: central limit theorem; fibre process; point process; random measure; space of compact sets
@article{KYB_2003_39_6_a3,
author = {Pawlas, Zbyn\v{e}k},
title = {Central limit theorem for random measures generated by stationary processes of compact sets},
journal = {Kybernetika},
pages = {719--729},
year = {2003},
volume = {39},
number = {6},
mrnumber = {2035646},
zbl = {1249.60015},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a3/}
}
Pawlas, Zbyněk. Central limit theorem for random measures generated by stationary processes of compact sets. Kybernetika, Tome 39 (2003) no. 6, pp. 719-729. http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a3/
[1] Daley D. J., Vere-Jones D.: An Introduction to the Theory of Point Processes. Springer–Verlag, New York 1988 | MR | Zbl
[2] Fritz J.: Generalization of McMillan’s theorem to random set functions. Studia Sci. Math. Hungar. 5 (1970), 369–394 | MR
[3] Gnedenko B. V., Korolev V. Y.: Random Summation: Limit Theorems and Applications. CRC Press, Boca Raton 1996 | MR | Zbl
[4] Grandell J.: Doubly Stochastic Poisson Processes. (Lecture Notes in Mathematics 529.) Springer–Verlag, Berlin 1976 | MR | Zbl
[5] Heinrich L.: Normal approximation for some mean-value estimates of absolutely regular tessellations. Math. Methods Statist. 3 (1994), 1–24 | MR | Zbl
[6] Heinrich L., Molchanov I. S.: Central limit theorem for a class of random measures associated with germ-grain models. Adv. in Appl. Probab. 31 (1999), 283–314 | DOI | MR | Zbl
[7] Heinrich L., Schmidt V.: Normal convergence of multidimensional shot noise and rates of this convergence. Adv. in Appl. Probab. 17 (1985), 709–730 | DOI | MR | Zbl
[8] Pawlas Z., Beneš V.: On the central limit theorem for the stationary Poisson process of compact sets. Math. Nachr. (2003), to appear | MR
[9] Robbins H.: The asymptotic distribution of the sum of a random number of random variables. Bull. Amer. Math. Soc. 54 (1948), 1151–1161 | DOI | MR | Zbl
[10] Stoyan D., Kendall W. S., Mecke J.: Stochastic Geometry and Its Applications. Second edition. Wiley, New York, 1995 | MR | Zbl