The $dX(t)=Xb(X)dt+X\sigma(X)dW$ equation and financial mathematics. II
Kybernetika, Tome 39 (2003) no. 6, pp. 681-701
Cet article a éte moissonné depuis la source Czech Digital Mathematics Library
This paper continues the research started in [J. Štěpán and P. Dostál: The ${\mathrm d}X(t) = Xb(X){\mathrm d}t + X\sigma (X) {\mathrm d}W$ equation and financial mathematics I. Kybernetika 39 (2003)]. Considering a stock price $X(t)$ born by the above semilinear SDE with $\sigma (x,t)=\tilde{\sigma }(x(t)),$ we suggest two methods how to compute the price of a general option $g(X(T))$. The first, a more universal one, is based on a Monte Carlo procedure while the second one provides explicit formulas. We in this case need an information on the two dimensional distributions of ${\mathcal{L}}(Y(s), \tau (s))$ for $s\ge 0,$ where $Y$ is the exponential of Wiener process and $\tau (s)=\int \tilde{\sigma }^{-2}(Y(u))\, {\mathrm d}u$. Both methods are compared for the European option and the special choice $\tilde{\sigma }(y)=\sigma _2I_{(-\infty ,y_0]}(y)+\sigma _1I_{(y_0,\infty )}(y).$
This paper continues the research started in [J. Štěpán and P. Dostál: The ${\mathrm d}X(t) = Xb(X){\mathrm d}t + X\sigma (X) {\mathrm d}W$ equation and financial mathematics I. Kybernetika 39 (2003)]. Considering a stock price $X(t)$ born by the above semilinear SDE with $\sigma (x,t)=\tilde{\sigma }(x(t)),$ we suggest two methods how to compute the price of a general option $g(X(T))$. The first, a more universal one, is based on a Monte Carlo procedure while the second one provides explicit formulas. We in this case need an information on the two dimensional distributions of ${\mathcal{L}}(Y(s), \tau (s))$ for $s\ge 0,$ where $Y$ is the exponential of Wiener process and $\tau (s)=\int \tilde{\sigma }^{-2}(Y(u))\, {\mathrm d}u$. Both methods are compared for the European option and the special choice $\tilde{\sigma }(y)=\sigma _2I_{(-\infty ,y_0]}(y)+\sigma _1I_{(y_0,\infty )}(y).$
Classification :
60H10, 65C30, 91B28, 91G80
Keywords: stochastic differential equation; stochastic volatility; price of a general option; price of the European call option; Monte Carlo approximations
Keywords: stochastic differential equation; stochastic volatility; price of a general option; price of the European call option; Monte Carlo approximations
@article{KYB_2003_39_6_a1,
author = {\v{S}t\v{e}p\'an, Josef and Dost\'al, Petr},
title = {The $dX(t)=Xb(X)dt+X\sigma(X)dW$ equation and financial mathematics. {II}},
journal = {Kybernetika},
pages = {681--701},
year = {2003},
volume = {39},
number = {6},
mrnumber = {2035644},
zbl = {1249.60128},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a1/}
}
Štěpán, Josef; Dostál, Petr. The $dX(t)=Xb(X)dt+X\sigma(X)dW$ equation and financial mathematics. II. Kybernetika, Tome 39 (2003) no. 6, pp. 681-701. http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a1/
[1] Billingsley P.: Convergence of Probability Measures. Wiley, New York – Chichester – Weinheim 1999 | MR | Zbl
[2] Geman H., Madan D. B., Yor M.: Stochastic volatility, jumps and hidden time changes. Finance and Stochastics 6 (2002), 63–90 | DOI | MR | Zbl
[3] Kallenberg O.: Foundations of Modern Probability. Springer–Verlag, New York – Berlin – Heidelberg 1997 | MR | Zbl
[4] Rogers L.C.G., Williams D.: Diffusions, Markov Processes and Martingales. Volume 2: Itô Calculus. Cambridge University Press, Cambridge 2000 | MR | Zbl
[5] Štěpán J., Dostál P.: The ${\mathrm d}X(t)=Xb(X){\mathrm d}t+X\sigma (X)\,{\mathrm d}W$ equation and financial mathematics I. Kybernetika 39 (2003), 653–680 | MR