The $dX(t)=Xb(X)dt+X\sigma(X)dW$ equation and financial mathematics. I
Kybernetika, Tome 39 (2003) no. 6, pp. 653-680 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients $b$ and $\sigma $ being generally $C({\mathbb{R}}^+)$-progressive processes. Any weak solution $X$ is called a $(b,\sigma )$-stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution $\mu _\sigma $ of $X$ in $C({\mathbb{R}}^+)$ in the special case of a diffusion volatility $\sigma (X,t)=\tilde{\sigma }(X(t)).$ A martingale option pricing method is presented.
The existence of a weak solution and the uniqueness in law are assumed for the equation, the coefficients $b$ and $\sigma $ being generally $C({\mathbb{R}}^+)$-progressive processes. Any weak solution $X$ is called a $(b,\sigma )$-stock price and Girsanov Theorem jointly with the DDS Theorem on time changed martingales are applied to establish the probability distribution $\mu _\sigma $ of $X$ in $C({\mathbb{R}}^+)$ in the special case of a diffusion volatility $\sigma (X,t)=\tilde{\sigma }(X(t)).$ A martingale option pricing method is presented.
Classification : 60H10, 91B28, 91G20
Keywords: weak solution and uniqueness in law in the SDE-theory; $(b, \sigma )$-stock price; its Girsanov and DDS-reduction; investment process; option pricing
@article{KYB_2003_39_6_a0,
     author = {\v{S}t\v{e}p\'an, Josef and Dost\'al, Petr},
     title = {The $dX(t)=Xb(X)dt+X\sigma(X)dW$ equation and financial mathematics. {I}},
     journal = {Kybernetika},
     pages = {653--680},
     year = {2003},
     volume = {39},
     number = {6},
     mrnumber = {2035643},
     zbl = {1249.91128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a0/}
}
TY  - JOUR
AU  - Štěpán, Josef
AU  - Dostál, Petr
TI  - The $dX(t)=Xb(X)dt+X\sigma(X)dW$ equation and financial mathematics. I
JO  - Kybernetika
PY  - 2003
SP  - 653
EP  - 680
VL  - 39
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a0/
LA  - en
ID  - KYB_2003_39_6_a0
ER  - 
%0 Journal Article
%A Štěpán, Josef
%A Dostál, Petr
%T The $dX(t)=Xb(X)dt+X\sigma(X)dW$ equation and financial mathematics. I
%J Kybernetika
%D 2003
%P 653-680
%V 39
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a0/
%G en
%F KYB_2003_39_6_a0
Štěpán, Josef; Dostál, Petr. The $dX(t)=Xb(X)dt+X\sigma(X)dW$ equation and financial mathematics. I. Kybernetika, Tome 39 (2003) no. 6, pp. 653-680. http://geodesic.mathdoc.fr/item/KYB_2003_39_6_a0/

[1] Beckers S.: The constant elasticity of variance model and its implications for option pricing. J. Finance 35 (1980), 661–673 | DOI

[2] Billingsley P.: Convergence of Probability Measures. Wiley, New York – Chichester – Weinheim 1999 | MR | Zbl

[3] Borovkov K., Novikov A.: On a new approach to calculating expectations for option pricing. J. Appl. Probab. 39 (2002), 4, 889–895 | DOI | MR | Zbl

[4] Cohn D. C.: Measure Theory. Birkhäuser, Boston 1980 | MR | Zbl

[5] Cox J. C.: Notes on option pricing I: Constant elasticity of variance diffusions. Stanford University Preprint, 1975

[6] Dupačová J., Hurt, J., Štěpán J.: Stochastic Modeling in Economics and Finance. Kluwer, Dordrecht 2002 | Zbl

[7] Geman H., Madan D. B., Yor M.: Stochastic volatility, jumps and hidden time changes. Finance and Stochastics 6 (2002), 63–90 | DOI | MR | Zbl

[8] Kallenberg O.: Foundations of Modern Probability. Springer–Verlag, New York – Berlin – Heidelberg 1997 | MR | Zbl

[9] Karatzas I., Shreve D. E.: Brownian Motion and Stochastic Calculus. Springer–Verlag, New York – Berlin – Heidelberg 1991 | MR | Zbl

[10] Merton R. C.: Optimum consumption and portfolio rules in a continuous time model. J. Econom. Theory 3 (1971), 373–413 | DOI | MR | Zbl

[11] Revuz D., Yor M.: Continuous Martingales and Brownian Motion. Springer–Verlag, New York – Berlin – Heidelberg 1994 | MR | Zbl

[12] Rogers L. C. G., Williams D.: Diffusions, Markov Processes and Martingales. Volume 1: Foundations. Cambridge University Press, Cambridge 2000 | MR | Zbl

[13] Rogers L.C.G., Williams D.: Diffusions, Markov Processes and Martingales. Volume 2: Itô Calculus. Cambridge University Press, Cambridge 2000 | MR | Zbl

[14] Scott L. O.: Option pricing when variance changes randomly: theory, estimation, and an application. J. Finan. Quant. Anal. 22 (1987), 419–438 | DOI

[15] Scott L. O.: Random-variance option pricing: empirical tests of the model and delta-sigma hedging. Adv. in Futures Option Res. 5 (1991), 113–135

[16] Steele J. M.: Stochastic Calculus and Financial Applications. Springer–Verlag, New York – Berlin – Heidelberg 2001 | MR | Zbl

[17] Wiggins J. B.: Option values under stochastic volatility: theory and empirical estimates. J. Finan. Econom. 19 (1987), 351–372 | DOI

[18] Yor M.: Quelques résultats sur certaines measures extrémales à la representation des martingales. (Lecture Notes in Mathematics 695.) Springer–Verlag, New York – Berlin – Heidelberg 1979