1-Lipschitz aggregation operators and quasi-copulas
Kybernetika, Tome 39 (2003) no. 5, pp. 615-629 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper, binary 1-Lipschitz aggregation operators and specially quasi-copulas are studied. The characterization of 1-Lipschitz aggregation operators as solutions to a functional equation similar to the Frank functional equation is recalled, and moreover, the importance of quasi-copulas and dual quasi-copulas for describing the structure of 1-Lipschitz aggregation operators with neutral element or annihilator is shown. Also a characterization of quasi-copulas as solutions to a certain functional equation is proved. Finally, the composition of 1-Lipschitz aggregation operators, and specially quasi-copulas, is studied.
In the paper, binary 1-Lipschitz aggregation operators and specially quasi-copulas are studied. The characterization of 1-Lipschitz aggregation operators as solutions to a functional equation similar to the Frank functional equation is recalled, and moreover, the importance of quasi-copulas and dual quasi-copulas for describing the structure of 1-Lipschitz aggregation operators with neutral element or annihilator is shown. Also a characterization of quasi-copulas as solutions to a certain functional equation is proved. Finally, the composition of 1-Lipschitz aggregation operators, and specially quasi-copulas, is studied.
Classification : 26B35, 26B99, 60E05
Keywords: aggregation operator; 1-Lipschitz aggregation operator; copula; quasi-copula; kernel aggregation operator
@article{KYB_2003_39_5_a8,
     author = {Koles\'arov\'a, Anna},
     title = {1-Lipschitz aggregation operators and quasi-copulas},
     journal = {Kybernetika},
     pages = {615--629},
     year = {2003},
     volume = {39},
     number = {5},
     mrnumber = {2042344},
     zbl = {1249.60018},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a8/}
}
TY  - JOUR
AU  - Kolesárová, Anna
TI  - 1-Lipschitz aggregation operators and quasi-copulas
JO  - Kybernetika
PY  - 2003
SP  - 615
EP  - 629
VL  - 39
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a8/
LA  - en
ID  - KYB_2003_39_5_a8
ER  - 
%0 Journal Article
%A Kolesárová, Anna
%T 1-Lipschitz aggregation operators and quasi-copulas
%J Kybernetika
%D 2003
%P 615-629
%V 39
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a8/
%G en
%F KYB_2003_39_5_a8
Kolesárová, Anna. 1-Lipschitz aggregation operators and quasi-copulas. Kybernetika, Tome 39 (2003) no. 5, pp. 615-629. http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a8/

[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distributions functions. Statist. Probab. Lett. 17 (1993) 85–89 | DOI | MR

[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators (T. Calvo, G. Mayor and R. Mesiar, eds.), Physica–Verlag, Heidelberg, 2002, pp. 3–104 | MR | Zbl

[3] Calvo T., Baets, B. De, Fodor J. C.: The functional equations of Alsina and Frank for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001), 385–394 | MR

[4] Calvo T., Mesiar R.: Stability of aggegation operators. In: Proc. 1st Internat. Conference in Fuzzy Logic and Technology (EUSFLAT’2001), Leicester, 2001, pp. 475–478

[5] Baets B. De, Fodor J.: Generator triplets of additive fuzzy preference structures. In: Proc. Sixth Internat. Workshop on Relational Methods in Computer Science, Tilburg, The Netherlands 2001, pp. 306–315

[6] DeḂaets B.: T-norms and copulas in fuzzy preference modeling. In: Proc. Linz Seminar’2003, Linz, 2003, p. 101

[7] Fodor J. C., Yager R. R., Rybalov: Structure of uninorms. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997), 411–427 | DOI | MR | Zbl

[8] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl

[9] Genest C., Molina L., Lallena, L., Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 | DOI | MR | Zbl

[10] Janssens S., Baets B. De, Meyer H. De: Bell-type inequalities for commutative quasi-copulas. Preprint, 2003

[11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 | MR | Zbl

[12] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators. In: Proc. Summer School on Aggregation Operators (AGOP’2001), Oviedo, Spain 2001, pp. 71–76

[13] Kolesárová A., Mordelová, J., Muel E.: Kernel aggregation operators and their marginals. Fuzzy Sets and Systems, accepted | MR | Zbl

[14] Kolesárová A., Mordelová, J., Muel E.: Construction of kernel aggregation operators from marginal functions. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems 10/s (2002), 37–50 | DOI | MR

[15] Kolesárová A., Mordelová, J., Muel E.: A review of of binary kernel aggregation operators. In: Proc. Summer School on Aggregation Operators (AGOP’2003), Alcalá de Henares, Spain 2003, pp. 97–102

[16] Mesiar R.: Compensatory operators based on triangular norms. In: Proc. Third European Congress on Intelligent Techniques and Soft Computing (EUFIT’95), Aachen 1995, pp. 131–135

[17] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 | DOI | MR | Zbl

[18] Nelsen R. B.: Copulas: an introduction to their properties and applications. Preprint, 2003 | Zbl