Keywords: aggregation operator; 1-Lipschitz aggregation operator; copula; quasi-copula; kernel aggregation operator
@article{KYB_2003_39_5_a8,
author = {Koles\'arov\'a, Anna},
title = {1-Lipschitz aggregation operators and quasi-copulas},
journal = {Kybernetika},
pages = {615--629},
year = {2003},
volume = {39},
number = {5},
mrnumber = {2042344},
zbl = {1249.60018},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a8/}
}
Kolesárová, Anna. 1-Lipschitz aggregation operators and quasi-copulas. Kybernetika, Tome 39 (2003) no. 5, pp. 615-629. http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a8/
[1] Alsina C., Nelsen R. B., Schweizer B.: On the characterization of a class of binary operations on distributions functions. Statist. Probab. Lett. 17 (1993) 85–89 | DOI | MR
[2] Calvo T., Kolesárová A., Komorníková, M., Mesiar R.: Aggregation operators: properties, classes and construction methods. In: Aggregation Operators (T. Calvo, G. Mayor and R. Mesiar, eds.), Physica–Verlag, Heidelberg, 2002, pp. 3–104 | MR | Zbl
[3] Calvo T., Baets, B. De, Fodor J. C.: The functional equations of Alsina and Frank for uninorms and nullnorms. Fuzzy Sets and Systems 120 (2001), 385–394 | MR
[4] Calvo T., Mesiar R.: Stability of aggegation operators. In: Proc. 1st Internat. Conference in Fuzzy Logic and Technology (EUSFLAT’2001), Leicester, 2001, pp. 475–478
[5] Baets B. De, Fodor J.: Generator triplets of additive fuzzy preference structures. In: Proc. Sixth Internat. Workshop on Relational Methods in Computer Science, Tilburg, The Netherlands 2001, pp. 306–315
[6] DeḂaets B.: T-norms and copulas in fuzzy preference modeling. In: Proc. Linz Seminar’2003, Linz, 2003, p. 101
[7] Fodor J. C., Yager R. R., Rybalov: Structure of uninorms. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems 5 (1997), 411–427 | DOI | MR | Zbl
[8] Frank M. J.: On the simultaneous associativity of $F(x,y)$ and $x+y-F(x,y)$. Aequationes Math. 19 (1979), 194–226 | DOI | MR | Zbl
[9] Genest C., Molina L., Lallena, L., Sempi C.: A characterization of quasi-copulas. J. Multivariate Anal. 69 (1999), 193–205 | DOI | MR | Zbl
[10] Janssens S., Baets B. De, Meyer H. De: Bell-type inequalities for commutative quasi-copulas. Preprint, 2003
[11] Klement E. P., Mesiar, R., Pap E.: Triangular Norms. Kluwer, Dordrecht 2000 | MR | Zbl
[12] Kolesárová A., Mordelová J.: 1-Lipschitz and kernel aggregation operators. In: Proc. Summer School on Aggregation Operators (AGOP’2001), Oviedo, Spain 2001, pp. 71–76
[13] Kolesárová A., Mordelová, J., Muel E.: Kernel aggregation operators and their marginals. Fuzzy Sets and Systems, accepted | MR | Zbl
[14] Kolesárová A., Mordelová, J., Muel E.: Construction of kernel aggregation operators from marginal functions. Internat. J. of Uncertainty, Fuzziness and Knowledge-based Systems 10/s (2002), 37–50 | DOI | MR
[15] Kolesárová A., Mordelová, J., Muel E.: A review of of binary kernel aggregation operators. In: Proc. Summer School on Aggregation Operators (AGOP’2003), Alcalá de Henares, Spain 2003, pp. 97–102
[16] Mesiar R.: Compensatory operators based on triangular norms. In: Proc. Third European Congress on Intelligent Techniques and Soft Computing (EUFIT’95), Aachen 1995, pp. 131–135
[17] Nelsen R. B.: An Introduction to Copulas. (Lecture Notes in Statistics 139.) Springer, New York 1999 | DOI | MR | Zbl
[18] Nelsen R. B.: Copulas: an introduction to their properties and applications. Preprint, 2003 | Zbl