Keywords: text mining; knowledge base management; multi-level categorization; hierarchical text categorization
@article{KYB_2003_39_5_a6,
author = {Tikk, Domonkos and Yang, Jae Dong and Bang, Sun Lee},
title = {Hierarchical text categorization using fuzzy relational thesaurus},
journal = {Kybernetika},
pages = {583--600},
year = {2003},
volume = {39},
number = {5},
zbl = {1249.68241},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a6/}
}
Tikk, Domonkos; Yang, Jae Dong; Bang, Sun Lee. Hierarchical text categorization using fuzzy relational thesaurus. Kybernetika, Tome 39 (2003) no. 5, pp. 583-600. http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a6/
[1] Aas L., Eikvil L.: Text Categorisation: A Survey. Raport NR 941, Norwegian Computing Center, 1999
[2] Apte C., Damerau F. J., Weiss S. M.: Automated learning of decision rules for text categorization. ACM Trans. Information Systems 12 (1994), 3, 233–251 | DOI
[3] Baker K. D., McCallum A. K.: Distributional clustering of words for text classification. In: Proc. 21th Annual Internat. ACM SIGIR Conference on Research and Development in Information Retrieval (SIGIR’98), Melbourne, Australia 1998, pp. 96–103
[4] Chakrabarti S., Dom B., Agrawal, R., Raghavan P.: Scalable feature selection, classification and signature generation for organizing large text databases into hierarchical topic taxonomies. The VLDB Journal 7 (1998), 3, 163–178 | DOI
[5] Choi J. H., Park J. J., Yang J. D., Lee, and D. K.: An Object-based Approach to Managing Domain Specific Thesauri: Semiautomatic Thesaurus Construction, Query-based Browsing. Technical Report TR 98/11, Dept. of Computer Science, Chonbuk National University, 1998. http://cs.chonbuk.ac.kr/$\sim $jdyang/publication/techpaper.html
[6] Chuang W., Tiyyagura A., Yang, J., Giuffrida G.: A fast algorithm for hierarchical text classification. In: Proc. 2nd Internat. Conference on Data Warehousing and Knowledge Discovery (DaWaK’00), London–Greenwich, UK 2000, pp. 409–418
[7] Dagan I., Karov, Y., Roth D.: Mistake-driven learning in text categorization. In: Proc. Second Conference on Empirical Methods in Natural Language Processing (C. Cardie and R. Weischedel, eds.), Association for Computational Linguistics, Somerset, NJ 1997, pp. 55–63
[8] Dumais S. T.: Improving the retrieval information from external sources. Behaviour Research Methods, Instruments and Computers 23 (1991), 2, 229–236 | DOI
[9] Dumais S. T., Platt J., Heckerman, D., Sahami M.: Inductive learning algorithms and representations for text categorization. In: Proc. 7th ACM Internat. Conference on Information and Knowledge Management (CIKM-98), Bethesda, MD 1998, pp. 148-ů155
[10] Fisher D. H.: Knowledge acquisition via incremental conceptual clustering. Machine Learning 2 (1987), 139–172 | DOI
[11] Joachims T.: Text Categorization with Support Vector Machines: Learning with Many Relevant Features. Technical Report, University of Dortmund, Dept. of Informatics, Dortmund, Germany 1997
[12] Koller D., Sahami M.: Hierarchically classifying documents using a very few words. In: International Conference on Machine Learning, Volume 14, San Mateo, CA, Morgan-Kaufmann 1997
[13] Korfhage R.: Information Storage and Retrieval. Wiley, New York 1997
[14] Larsen H. L., Yager R. R.: The use of fuzzy relational thesaurus for classificatory problem solving in information retrieval and expert systems. IEEE Trans. on Systems, Man, and Cybernetics 23 (1993), 1, 31–40 | DOI
[15] Lewis D. D., Ringuette M.: A comparison of two learning algorithms for text classification. In: Proc. Third Annual Symposium on Document Analysis and Information Retrieval, 1994, pp. 81–93
[16] McCallum A., Rosenfeld R., Mitchell, T., Ng A.: Improving text classification by shrinkage in a hierarchy of classes. In: Proceedings of ICML-98, 1998. http://www-2.cs.cmu.edu/$\sim $mccallum/papers/hier-icml98.ps.gz
[17] Mitchell T. M.: Machine Learning. McGraw Hill, New York 1996 | Zbl
[18] Miyamoto S.: Fuzzy Sets in Information Retrieval and Cluster Analysis. (Number 4 in Theory and Decision Library D: System Theory, Knowledge Engineering and Problem Solving.) Kluwer, Dordrecht 1990 | MR | Zbl
[19] Mladenić D., Grobelnik M.: Feature selection for classification based on text hierarchy. In: Working Notes of Learning from Web, Conference on Automated Learning and Discovery (CONALD), 1998
[20] Nigam K., McCallum A., Thrun, S., Mitchell T.: Learning to classify text from labeled and unlabeled documents. In: Proc. 15th National Conference on Artifical Intelligence (AAAI-98), 1998
[21] Radecki T.: Fuzzy set theoretical approach to document retrieval. Information Processing and Management 15 (1979), 5, 247–259 | DOI | Zbl
[22] Ruspini E. H., Bonissone P. P., (eds.) W. Pedrycz: Handbook of Fuzzy Computation. Oxford University Press and Institute of Physics Publishing, Bristol and Philadelphia 1998 | MR | Zbl
[23] Salton G.: Automatic Text Processing: the Transformation, Analysis, and Retrieval of Information by Computer. Addision-Wesley, Reading, MA 1989
[24] Salton G., McGill M. J.: An Introduction to Modern Information Retrieval. McGraw-Hill, New York 1983
[25] Sebastiani F.: Machine learning in automated text categorization. ACM Computing Surveys 34 (2002), 1, 1–47 | DOI
[26] Rijsbergen C. J. van: Information Retrieval. Second edition. Butterworths, London 1979. http://www.dcs.gla.ac.uk/Keith
[27] Weiss S. M., Apte C., Damerau F. J., Johnson D. E., Oles F. J., Goetz, T., Hampp T.: Maximizing text-mining performance. IEEE Intelligent Systems 14 (1999), 4, 2–8
[28] Wiener E., Pedersen J. O., Weigend A. S.: A neural network approach to topic spotting. In: Proc. 4th Annual Symposium on Document Analysis and Information Retrieval, pages 22–34, 1993
[29] Yang Y.: An evaluation of statistical approaches to text categorization. Information Retrieval 1 (1999), 1–2, 69–90. http://citeseer.nj.nec.com/yang97evaluation.html | DOI