Keywords: invariant extended quasi-metric; complexity function; balanced quasi-metric; infinite word; Baire metric; contraction mapping; Divide & Conquer algorithm
@article{KYB_2003_39_5_a5,
author = {Romaguera, S. and S\'anchez-P\'erez, E. A. and Valero, O.},
title = {Computing complexity distances between algorithms},
journal = {Kybernetika},
pages = {569--582},
year = {2003},
volume = {39},
number = {5},
mrnumber = {2042342},
zbl = {1249.54069},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a5/}
}
Romaguera, S.; Sánchez-Pérez, E. A.; Valero, O. Computing complexity distances between algorithms. Kybernetika, Tome 39 (2003) no. 5, pp. 569-582. http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a5/
[1] Bakker J. W. de, Vink E. P. de: Denotational models for programming languages: applications of Banach’s fixed point theorem. Topology Appl. 85 (1998), 35–52 | DOI | MR | Zbl
[2] Ćirić L.: Periodic and fixed point theorems in a quasi-metric space. J. Austral. Math. Soc. Ser. A 54 (1993), 80–85 | DOI | MR | Zbl
[3] Doitchinov D.: On completeness in quasi-metric spaces. Topology Appl. 30 (1988), 127–148 | DOI | MR | Zbl
[4] Engelking R.: General Topology. Polish Sci. Publ., Warsaw 1977 | MR | Zbl
[6] Fletcher P., Lindgren W. F.: Quasi–Uniform Spaces. Marcel Dekker, 1982 | MR | Zbl
[7] García-Raffi L. M., Romaguera, S., Sánchez-Pérez E. A.: Sequence spaces and asymmetric norms in the theory of computational complexity. Math. Comput. Modelling 36 (2002), 1–11 | DOI | MR | Zbl
[8] Giles J. R.: Introduction to the Analysis of Metric Spaces. (Austral. Math. Soc. Lecture Series no. 3.) Cambridge Univ. Press, Cambridge 1987 | MR | Zbl
[9] Hicks T. L.: Fixed point theorems for quasi-metric spaces. Math. Japon. 33 (1988), 231–236 | MR | Zbl
[10] Jachymski J.: A contribution to fixed point theory in quasi-metric spaces. Publ. Math. Debrecen 43 (1993), 283–288 | MR | Zbl
[11] Kahn G.: The semantics of a simple language for parallel processing. In: Proc. IFIP Congress, Elsevier and North-Holland, Amsterdam 1974, pp. 471–475 | MR
[12] Keimel K., Roth W.: Ordered Cones and Approximation. Springer–Verlag, Berlin 1992 | MR | Zbl
[13] Kopperman R. D.: Lengths on semigroups and groups. Semigroup Forum 25 (1982), 345–360 | DOI | MR | Zbl
[14] Künzi H. P. A.: Nonsymmetric distances and their associated topologies: About the origin of basic ideas in the area of asymmetric topology. In: Handbook of the History of General Topology, Volume 3 (C. E. Aull and R. Lowen eds.), Kluwer, Dordrecht 2001, pp. 853–968 | MR
[15] Künzi H. P. A., Ryser C.: The Bourbaki quasi-uniformity. Topology Proc. 20 (1995), 161–183 | MR | Zbl
[16] Lecomte P., Rigo M.: On the representation of real numbers using regular languages. Theory Comput. Systems 35 (2002), 13–38 | MR | Zbl
[17] Matthews S. G.: Partial metric topology. In: Proc. 8th Summer Conference on General Topology and Applications, Ann. New York Acad. Sci. 728 (1994), 183–197 | DOI | MR | Zbl
[18] Reilly I. L., Subrahmanyam P. V.: Some fixed point theorems. J. Austral. Math. Soc. Ser. A 53 (1992), 304–312 | DOI | MR | Zbl
[19] Reilly I. L., Subrahmanyam P. V., Vamanamurthy M. K.: Cauchy sequences in quasi-pseudo-metric spaces. Monatsh. Math. 93 (1982), 127–140 | DOI | MR | Zbl
[20] Romaguera S., Sanchis M.: Semi-Lipschitz functions and best approximation in quasi-metric spaces. J. Approx. Theory 103 (2000), 292–301 | DOI | MR | Zbl
[21] Romaguera S., Schellekens M.: Quasi-metric properties of complexity spaces. Topology Appl. 98 (1999), 311–322 | DOI | MR | Zbl
[22] Romaguera S., Schellekens M.: Duality and quasi-normability for complexity spaces. Appl. Gen. Topology 3 (2002), 91–112 | MR | Zbl