Consistency-driven approximation of a pairwise comparison matrix
Kybernetika, Tome 39 (2003) no. 5, pp. 561-568 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The pairwise comparison method is an interesting technique for building a global ranking from binary comparisons. In fact, some web search engines use this method to quantify the importance of a set of web sites. The purpose of this paper is to search a set of priority weights from the preference information contained in a general pairwise comparison matrix; i.e., a matrix without consistency and reciprocity properties. For this purpose, we consider an approximation methodology within a distance-based framework. In this context, Goal Programming is introduced as a flexible tool for computing priority weights.
The pairwise comparison method is an interesting technique for building a global ranking from binary comparisons. In fact, some web search engines use this method to quantify the importance of a set of web sites. The purpose of this paper is to search a set of priority weights from the preference information contained in a general pairwise comparison matrix; i.e., a matrix without consistency and reciprocity properties. For this purpose, we consider an approximation methodology within a distance-based framework. In this context, Goal Programming is introduced as a flexible tool for computing priority weights.
Classification : 90B50, 90C29, 91B08
Keywords: ranking theory; pairwise comparison; distance-based methods; goal programming
@article{KYB_2003_39_5_a4,
     author = {Dopazo, Esther and Gonz\'alez-Pach\'on, Jacinto},
     title = {Consistency-driven approximation of a pairwise comparison matrix},
     journal = {Kybernetika},
     pages = {561--568},
     year = {2003},
     volume = {39},
     number = {5},
     mrnumber = {2042341},
     zbl = {1249.91025},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a4/}
}
TY  - JOUR
AU  - Dopazo, Esther
AU  - González-Pachón, Jacinto
TI  - Consistency-driven approximation of a pairwise comparison matrix
JO  - Kybernetika
PY  - 2003
SP  - 561
EP  - 568
VL  - 39
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a4/
LA  - en
ID  - KYB_2003_39_5_a4
ER  - 
%0 Journal Article
%A Dopazo, Esther
%A González-Pachón, Jacinto
%T Consistency-driven approximation of a pairwise comparison matrix
%J Kybernetika
%D 2003
%P 561-568
%V 39
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a4/
%G en
%F KYB_2003_39_5_a4
Dopazo, Esther; González-Pachón, Jacinto. Consistency-driven approximation of a pairwise comparison matrix. Kybernetika, Tome 39 (2003) no. 5, pp. 561-568. http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a4/

[1] Brin S., Page L.: The anatomy of a large-scale hypertextual web search engine. Computer Networks and ISDN Systems 30 (1998), 107–117 | DOI

[2] Charnes A., Cooper W. W.: Goal programming and multiple objective optimization: Part 1. European J. Oper. Res. 1 (1977), 39–54 | DOI | MR

[3] Chu M. T.: On the optimal consistent approximation to pairwise comparison matrices. Linear Algebra Appl. 272 (1998), 155–168 | MR | Zbl

[4] González-Pachón J., Romero C.: Distance-based consensus methods: a goal programming approach. Omega 27 (1999), 341–347 | DOI

[5] Ignizio J. P., Cavalier T. M.: Linear Programming. Prentice-Hall, Englewood Cliffs, N.J. 1994

[6] Jensen R. E.: An alternative scaling method for priorities in hierarchical structures. J. Math. Psychology 28 (1984), 317–332 | DOI

[7] Kendall M. G.: Further contributions to the theory of paired comparisons. Biometrics 11 (1955), 43–62 | DOI | MR

[8] Koczkodaj W., Orlowski M.: Computing a consistent approximation to a generalized pairwise comparisons matrix. Comput. Math. Appl. 37 (1999), 79–85 | DOI | MR | Zbl

[9] Romero C.: Handbook of Critical Issues in Goal Programming. Pergamon Press, London 1991 | Zbl

[10] Saaty T. L.: The Analytic Hierarchy Process. McGraw-Hill, New York 1980 | MR | Zbl

[11] Saaty T. L., Vargas L. G.: Comparison of eigenvalues, logarithmic least square and least square methods in estimating ratios. Math. Model. 5 (1984), 309–324 | DOI | MR

[12] Wei T. H.: The Algebraic Foundations of Ranking Theory. Cambridge Univ. Press, Cambridge 1952