Keywords: inherently parallel methods; convex feasibility problems; projections onto convex sets; slow convergence
@article{KYB_2003_39_5_a3,
author = {Crombez, Gilbert},
title = {Non-monotoneous parallel iteration for solving convex feasibility problems},
journal = {Kybernetika},
pages = {547--560},
year = {2003},
volume = {39},
number = {5},
mrnumber = {2042340},
zbl = {1249.65040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a3/}
}
Crombez, Gilbert. Non-monotoneous parallel iteration for solving convex feasibility problems. Kybernetika, Tome 39 (2003) no. 5, pp. 547-560. http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a3/
[1] Bauschke H., Borwein J.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38 (1996), 367–426 | DOI | MR | Zbl
[2] Butnariu D., Censor Y.: On the behaviour of a block-iterative projection method for solving convex feasibility problems. Internat. J. Computer Math. 34 (1990), 79–94 | DOI
[3] Butnariu D., Flam S. D.: Strong convergence of expected-projection methods in Hilbert spaces. Numer. Funct. Anal. Optim. 16 (1995), 601–636 | DOI | MR | Zbl
[4] Censor Y., Zenios S.A.: Parallel Optimization. Theory, Algorithms, and Applications. Oxford University Press, New York 1997 | MR | Zbl
[5] Combettes P. L.: Construction d’un point fixe commun à une famille de contractions fermes. C. R. Acad. Sci. Paris Sér. I Math. 320 (1995), 1385–1390 | MR
[6] Crombez G.: Viewing parallel projection methods as sequential ones in convex feasibility problems. Trans. Amer. Math. Soc. 347 (1995), 2575–2583 | DOI | MR | Zbl
[7] Crombez G.: Solving convex feasibility problems by a parallel projection method with geometrically defined parameters. Appl. Anal. 64 (1997), 277–290 | DOI | MR | Zbl
[8] Crombez G.: Improving the speed of convergence in the method of projections onto convex sets. Publ. Math. Debrecen 58 (2001), 29–48 | MR | Zbl
[9] Gubin L. G., Polyak B. T., Raik E. V.: The method of projections for finding the common point of convex sets. U.S.S.R. Comput. Math. and Math. Phys. 7 (1967), 1–24 | DOI
[10] Kiwiel K.: Block-iterative surrogate projection methods for convex feasibility problems. Linear Algebra Appl. 215 (1995), 225–259 | MR | Zbl
[11] Pierra G.: Decomposition through formalization in a product space. Math. Programming 28 (1984), 96–115 | DOI | MR | Zbl
[12] Stark H., Yang Y.: Vector Space Projections. Wiley, New York 1998 | Zbl