Keywords: lattice; ideal; induction; temporal reasoning; prime implicants/implicates
@article{KYB_2003_39_5_a2,
author = {Mart{\'\i}nez, J. and Cordero, P. and Guti\'errez, G. and Guzm\'an, I. P. de},
title = {Restricted ideals and the groupability property. {Tools} for temporal reasoning},
journal = {Kybernetika},
pages = {521--546},
year = {2003},
volume = {39},
number = {5},
mrnumber = {2042339},
zbl = {1249.03004},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a2/}
}
TY - JOUR AU - Martínez, J. AU - Cordero, P. AU - Gutiérrez, G. AU - Guzmán, I. P. de TI - Restricted ideals and the groupability property. Tools for temporal reasoning JO - Kybernetika PY - 2003 SP - 521 EP - 546 VL - 39 IS - 5 UR - http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a2/ LA - en ID - KYB_2003_39_5_a2 ER -
Martínez, J.; Cordero, P.; Gutiérrez, G.; Guzmán, I. P. de. Restricted ideals and the groupability property. Tools for temporal reasoning. Kybernetika, Tome 39 (2003) no. 5, pp. 521-546. http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a2/
[1] Abiteboul S., Vianu V.: Non-determinism in logic based languages. Ann. Math. Artif. Intell. 3 (1991), 151–186 | DOI | MR | Zbl
[2] Corciulo L., Giannotti F., Pedreschi, D., Zaniolo C.: Expressive power of non-deterministic operators for logic-based languages. Workshop on Deductive Databases and Logic Programming, 1994, pp. 27–40
[3] Cordero P., Enciso, M., Guzmán I. de: Structure theorems for closed sets of implicates/implicants in temporal logic. (Lecture Notes in Artificial Intelligence 1695.) Springer–Verlag, Berlin 1999 | Zbl
[4] Cordero P., Enciso, M., Guzmán I. de: A temporal negative normal form which preserves implicants and implicates. J. Appl. Non-Classical Logics 10 (2000), 3–4, 243–272 | DOI | MR | Zbl
[5] Cordero P., Enciso, M., Guzmán I. de: From the posets of temporal implicates/implicants to a temporal negative normal form. Rep. Math. Logic 36 (2002), 3–48
[6] Cordero P., Enciso, M., Guzmán I. de: Bases for closed sets of implicants and implicates in temporal logic. Acta Inform. 38 (2002), 599–619 | DOI | MR | Zbl
[7] Cordero P., Enciso M., Guzmán, I. de, Martínez J.: A New algebraic tool for automatic theorem provers. Ann. Math. Artif. Intell. (to appear)
[8] Guzmán I. de, Ojeda, M., Valverde A.: Reductions for non-clausal theorem proving. Theoret. Comput. Sci. 266 (2001), 1–2, 81–112 | DOI | MR | Zbl
[9] Dix A. J.: Non-determinism as a paradigm for understanding the user interface. Chapter 4 in Formal Methods in Human-Computer Iteraction. Cambridge University Press, Cambridge 1990, pp. 97–127
[10] Giannoti F., Pedreschi D., Sacca, D., Zaniolo C.: Non-determinism in deductive databases. Proc. 2nd Internat. Conference on Deductive and Object-Oriented Databases, 1991
[11] Grätzer G.: General Lattice Theory. Second edition. Birkhäuser, Basel 1998 | MR
[12] Gutiérrez G., Guzmán I. de, Martínez J., Ojeda, M., Valverde A.: Reduction Theorems for Boolean Formulas Using $\Delta $-Trees. Springer Verlag, Berlin 2000 | MR | Zbl
[13] Gutiérrez G., Guzmán I. de, Martínez J., Ojeda, M., Valverde A.: Satisfiability testing for Boolean formulas using $\Delta $-trees. Studia Folder | Zbl
[14] Hänle R., Escalada G.: Deduction in many valued logics: a survey. Mathware and Soft Computing, 1997 | MR
[15] Hänle R.: Advances in Many-Valued Logics. Kluwer, Dordrecht 1999
[16] Jackson P., Pais J.: Computing Prime Implicants. (Lecture Notes in Artificial Intelligence 449.) Spriger-Verlag, Berlin 1990, pp. 543–557 | MR
[17] Kean A.: The approximation of implicates and explanations. Internat. J. Approx. Reason. 9 (1993), 97–128 | DOI | MR | Zbl
[18] Kean A., Tsiknis G.: An incremental method for generating prime implicants/implicates. J. Symbolic Comput. 9 (1990), 185–206 | DOI | MR | Zbl
[19] Kleer J. de, Mackworth A. K., Reiter R.: Characterizing diagnoses and systems. Artif. Intell. 56 (1992), 2–3, 192–222 | DOI | MR | Zbl
[20] Kogan A., Ibaraki, T., Makino K.: Functional dependencies in horn theories. Artif. Intell. 108 (1999), 1–30 | DOI | MR | Zbl
[21] Marquis P.: Extending abduction from propositional to first-order logic. Fund. Artif. Intell. Res. 1991, pp. 141–155 | DOI | MR | Zbl
[22] Martínez J.: $\Omega $-álgebras con onds. Doctoral Dissertation, University of Málaga, 2000
[23] Martínez J., Gutierrez G., Guzmán I. P. de, Cordero P.: Multilattices looking at computations. Discrete Mathematics (to appear)
[24] Mishchenko A., Brayton R.: Theory of non-deterministic networks. An International Workshop on Boolean Problems, 2002
[25] Tomite M.: Efficient Parsing for Natural Language. Kluwer, Dordrecht 1986