Keywords: neural network; Bayesian probability theory; geomagnetic storm; prediction
@article{KYB_2003_39_5_a1,
author = {Andrejkov\'a, Gabriela and Levick\'y, Miroslav},
title = {Neural networks using {Bayesian} training},
journal = {Kybernetika},
pages = {511--520},
year = {2003},
volume = {39},
number = {5},
mrnumber = {2042338},
zbl = {1248.62174},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a1/}
}
Andrejková, Gabriela; Levický, Miroslav. Neural networks using Bayesian training. Kybernetika, Tome 39 (2003) no. 5, pp. 511-520. http://geodesic.mathdoc.fr/item/KYB_2003_39_5_a1/
[1] Anděl J.: Mathematical Random Events (in Czech). Matfyzpress, Praha 2002
[2] Andrejková G., Azorová, J., Kudela K.: Artificial neural networks in prediction $D_{st}$ index. Proc. 1st Slovak Neural Network Symposium, ELFA, Košice, 1996, pp. 51–59
[3] Andrejková G., Tóth, H., Kudela K.: Fuzzy neural networks in the prediction of geomagnetic storms. Proc. “Artificial Intelligence in Solar-Terrestrial Physics”, Publisher European Space Agency, Lund 1997, pp. 173–179
[4] Bernardo J. M., Smith A. F. M.: Bayesian Theory. Wiley, New York 2002 | MR | Zbl
[5] Darwiche A.: A differential approach to inference in Bayesian networks. J. Assoc. Comput. Mach. 50 (2003), 2, 280–305 | DOI | MR
[6] Dechter R., Rish I.: Mini-buckets: A general scheme for bounded inference. J. Assoc. Comput. Mach. 50 (2003), 3, 107–153 | DOI | MR
[7] Hassoun M. H.: Fundamentals of Artificial Neural Networks. MIT Press, Cambridge, MA 1995 | Zbl
[8] Hertz J., Krogh, A., Palmer R. G.: Introduction to the Theory of Neural Computation (Santa Fe Institute Studies in the Science of Complexity, Vol. 1). Addison-Wesley, Reading 1991 | MR
[9] Levický M.: Neural Networks in the Analysis and the Document Classification. Diploma Thesis, P. J. Šafárik University, Košice, 2002
[10] Lundstedt H., Wintoft P.: Prediction of geomagnetic storms from solar wind data with the use of a neural network. Ann. Geophysicae 12, EGS-Springer-Verlag, 1994, pp. 19–24 | DOI
[11] MacKay D. J. C.: Bayesian Methods for Neural Networks: Theory and Applications. Neural Network Summer School, 1995
[12] MacKay D. J. C.: A practical Bayesian framework for backprop networks. Neural Computation 4, pp. 448–472 | DOI
[13] Müller P., Insua D. R.: Issues in Bayesian analysis of neural network model. Neural Computation 10, pp. 749–770 | DOI
[14] Neal R. M.: Probabilistic Inference Using Markov Chain Monte Carlo Methods. Technical Report CRG-TR-93-1, University of Toronto, 1993
[15] Neal R. M.: Bayesian Training of Backpropagation Networks by the Hybrid Monte Carlo Method. Technical Report CRG-TR-92-1, University of Toronto, 1992
[16] Schlesinger M. I., Hlaváč V.: Deset přednášek z teorie statistického a strukturního rozpoznávaní. ČVUT, Praha 1999