Keywords: finite-horizon LQ problems; Hamiltonian system; Riccati differential equation; algebraic Riccati equation; optimal value of the quadratic cost
@article{KYB_2003_39_4_a5,
author = {Ntogramatzidis, Lorenzo},
title = {A simple solution to the finite-horizon {LQ} problem with zero terminal state},
journal = {Kybernetika},
pages = {483--492},
year = {2003},
volume = {39},
number = {4},
mrnumber = {2024527},
zbl = {1249.49048},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_4_a5/}
}
Ntogramatzidis, Lorenzo. A simple solution to the finite-horizon LQ problem with zero terminal state. Kybernetika, Tome 39 (2003) no. 4, pp. 483-492. http://geodesic.mathdoc.fr/item/KYB_2003_39_4_a5/
[1] Anderson B. D. O., Moore J. B.: Optimal Control: Linear Quadratic Methods. Prentice Hall, London 1989 | Zbl
[2] Brunovský P., Komorník J.: LQ preview synthesis: optimal control and worst case analysis. IEEE Trans. Automat. Control 26 (1981), 2, 398–402
[3] Dorea C. E. T., Milani B. E. A.: Design of L-Q regulators for state constrained continuous-time systems. IEEE Trans. Automat. Control 40 (1995), 3, 544–548 | DOI | MR | Zbl
[4] Grimble M. J.: S-domain solution for the fixed end-point optimal-control problem. Proc. IEE 124 (1977), 9, 802–808
[5] Ionescu V., Oară, C., Weiss M.: Generalized Riccati Theory and Robust Control: a Popov Function Approach. Wiley, New York 1999 | MR | Zbl
[6] Juang J. N., Turner J. D., Chun H. M.: Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints. Trans. ASME, J. Dynamic Systems, Measurement Control 108 (1986), 1, 44–48 | DOI | Zbl
[7] Kojima A., Ishijima S.: LQ preview synthesis: optimal control and worst case analysis. IEEE Trans. Automat. Control 44 (1999), 2, 352–357 | DOI | MR | Zbl
[8] Kwakernaak H., Sivan R.: Linear Optimal Control Systems. Wiley, New York 1972 | MR | Zbl
[9] Lewis F. L., Syrmos V.: Optimal Control. Wiley, New York 1995
[10] Marro G., Prattichizzo, D., Zattoni E.: A geometric insight into the discrete time cheap and singular LQR problems. IEEE Trans. Automat. Control 47 (2002), 1, 102–107 | DOI | MR
[11] Marro G., Prattichizzo, D., Zattoni E.: A nested computational scheme for discrete-time cheap and singular LQ control. SIAM J. Control Optim. 2002 (to appear)
[12] Marro G., Prattichizzo, D., Zattoni E.: Previewed signal ${H}_2$ optimal decoupling by finite impulse response compensators. Kybernetika 38 (2002), 4, 479–492 | MR