A simple solution to the finite-horizon LQ problem with zero terminal state
Kybernetika, Tome 39 (2003) no. 4, pp. 483-492 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This short paper deals with the classical finite-horizon linear-quadratic regulator problem with the terminal state constrained to be zero, for both continuous and discrete-time systems. Closed-form expressions for the optimal state and costate trajectories of the Hamiltonian system, as well as the corresponding control law, are derived through the solutions of two infinite- horizon LQ problems, thus avoiding the use of the Riccati differential equation. The computation of the optimal value of the performance index, as a function of the initial state, is also presented.
This short paper deals with the classical finite-horizon linear-quadratic regulator problem with the terminal state constrained to be zero, for both continuous and discrete-time systems. Closed-form expressions for the optimal state and costate trajectories of the Hamiltonian system, as well as the corresponding control law, are derived through the solutions of two infinite- horizon LQ problems, thus avoiding the use of the Riccati differential equation. The computation of the optimal value of the performance index, as a function of the initial state, is also presented.
Classification : 49N10, 93C15
Keywords: finite-horizon LQ problems; Hamiltonian system; Riccati differential equation; algebraic Riccati equation; optimal value of the quadratic cost
@article{KYB_2003_39_4_a5,
     author = {Ntogramatzidis, Lorenzo},
     title = {A simple solution to the finite-horizon {LQ} problem with zero terminal state},
     journal = {Kybernetika},
     pages = {483--492},
     year = {2003},
     volume = {39},
     number = {4},
     mrnumber = {2024527},
     zbl = {1249.49048},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_4_a5/}
}
TY  - JOUR
AU  - Ntogramatzidis, Lorenzo
TI  - A simple solution to the finite-horizon LQ problem with zero terminal state
JO  - Kybernetika
PY  - 2003
SP  - 483
EP  - 492
VL  - 39
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_4_a5/
LA  - en
ID  - KYB_2003_39_4_a5
ER  - 
%0 Journal Article
%A Ntogramatzidis, Lorenzo
%T A simple solution to the finite-horizon LQ problem with zero terminal state
%J Kybernetika
%D 2003
%P 483-492
%V 39
%N 4
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_4_a5/
%G en
%F KYB_2003_39_4_a5
Ntogramatzidis, Lorenzo. A simple solution to the finite-horizon LQ problem with zero terminal state. Kybernetika, Tome 39 (2003) no. 4, pp. 483-492. http://geodesic.mathdoc.fr/item/KYB_2003_39_4_a5/

[1] Anderson B. D. O., Moore J. B.: Optimal Control: Linear Quadratic Methods. Prentice Hall, London 1989 | Zbl

[2] Brunovský P., Komorník J.: LQ preview synthesis: optimal control and worst case analysis. IEEE Trans. Automat. Control 26 (1981), 2, 398–402

[3] Dorea C. E. T., Milani B. E. A.: Design of L-Q regulators for state constrained continuous-time systems. IEEE Trans. Automat. Control 40 (1995), 3, 544–548 | DOI | MR | Zbl

[4] Grimble M. J.: S-domain solution for the fixed end-point optimal-control problem. Proc. IEE 124 (1977), 9, 802–808

[5] Ionescu V., Oară, C., Weiss M.: Generalized Riccati Theory and Robust Control: a Popov Function Approach. Wiley, New York 1999 | MR | Zbl

[6] Juang J. N., Turner J. D., Chun H. M.: Closed-form solutions for a class of optimal quadratic regulator problems with terminal constraints. Trans. ASME, J. Dynamic Systems, Measurement Control 108 (1986), 1, 44–48 | DOI | Zbl

[7] Kojima A., Ishijima S.: LQ preview synthesis: optimal control and worst case analysis. IEEE Trans. Automat. Control 44 (1999), 2, 352–357 | DOI | MR | Zbl

[8] Kwakernaak H., Sivan R.: Linear Optimal Control Systems. Wiley, New York 1972 | MR | Zbl

[9] Lewis F. L., Syrmos V.: Optimal Control. Wiley, New York 1995

[10] Marro G., Prattichizzo, D., Zattoni E.: A geometric insight into the discrete time cheap and singular LQR problems. IEEE Trans. Automat. Control 47 (2002), 1, 102–107 | DOI | MR

[11] Marro G., Prattichizzo, D., Zattoni E.: A nested computational scheme for discrete-time cheap and singular LQ control. SIAM J. Control Optim. 2002 (to appear)

[12] Marro G., Prattichizzo, D., Zattoni E.: Previewed signal ${H}_2$ optimal decoupling by finite impulse response compensators. Kybernetika 38 (2002), 4, 479–492 | MR