Optimal chemical balance weighing designs for $v+1$ objects
Kybernetika, Tome 39 (2003) no. 3, pp. 333-340 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The paper studies the estimation problem of individual weights of objects using a chemical balance weighing design under the restriction on the number times in which each object is weighed. Conditions under which the existence of an optimum chemical balance weighing design for $p = v$ objects implies the existence of an optimum chemical balance weighing design for $p = v + 1$ objects are given. The existence of an optimum chemical balance weighing design for $p = v + 1$ objects implies the existence of an optimum chemical balance weighing design for each $p v + 1$. The new construction method for optimum chemical balance weighing design for $p = v + 1$ objects is given. It uses the incidence matrices of ternary balanced block designs for v treatments.
The paper studies the estimation problem of individual weights of objects using a chemical balance weighing design under the restriction on the number times in which each object is weighed. Conditions under which the existence of an optimum chemical balance weighing design for $p = v$ objects implies the existence of an optimum chemical balance weighing design for $p = v + 1$ objects are given. The existence of an optimum chemical balance weighing design for $p = v + 1$ objects implies the existence of an optimum chemical balance weighing design for each $p v + 1$. The new construction method for optimum chemical balance weighing design for $p = v + 1$ objects is given. It uses the incidence matrices of ternary balanced block designs for v treatments.
Classification : 62K05, 62K10, 62K15, 92E20
Keywords: chemical balance weighing design; ternary balanced block design
@article{KYB_2003_39_3_a8,
     author = {Ceranka, Bronis{\l}aw and Graczyk, Ma{\l}gorzata},
     title = {Optimal chemical balance weighing designs for $v+1$ objects},
     journal = {Kybernetika},
     pages = {333--340},
     year = {2003},
     volume = {39},
     number = {3},
     mrnumber = {1995737},
     zbl = {1248.62128},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a8/}
}
TY  - JOUR
AU  - Ceranka, Bronisław
AU  - Graczyk, Małgorzata
TI  - Optimal chemical balance weighing designs for $v+1$ objects
JO  - Kybernetika
PY  - 2003
SP  - 333
EP  - 340
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a8/
LA  - en
ID  - KYB_2003_39_3_a8
ER  - 
%0 Journal Article
%A Ceranka, Bronisław
%A Graczyk, Małgorzata
%T Optimal chemical balance weighing designs for $v+1$ objects
%J Kybernetika
%D 2003
%P 333-340
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a8/
%G en
%F KYB_2003_39_3_a8
Ceranka, Bronisław; Graczyk, Małgorzata. Optimal chemical balance weighing designs for $v+1$ objects. Kybernetika, Tome 39 (2003) no. 3, pp. 333-340. http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a8/

[1] Banerjee K. S.: Weighing Designs for Chemistry, Medicine, Economics, Operations Research, Statistics. Marcel Dekker, New York 1975 | MR | Zbl

[2] Billington E. J.: Balanced $n$-array designs: a combinatorial survey and some new results. Ars Combin. 17A (1984), 37–72 | MR

[3] Billington E. J., Robinson P. J.: A list of balanced ternary block designs with $r \le 15$ and some necessary existence conditions. Ars Combin. 16 (1983), 235–258 | MR

[4] Ceranka B., Graczyk M.: Optimum chemical balance weighing designs under the restriction on weighings. Discuss. Math. 21 (2001), 111–120 | DOI | MR

[5] Ceranka B., Katulska K.: On some optimum chemical balance weighing designs for $v+1$ objects. J. Japan Statist. Soc. 18 (1988), 47–50 | MR | Zbl

[6] Ceranka B., Katulska K.: Chemical balance weighing designs under the restriction on the number of objects placed on the pans. Tatra Mt. Math. Publ. 17 (1999), 141–148 | MR | Zbl

[7] Ceranka B., Katulska, K., Mizera D.: The application of ternary balanced block designs to chemical balance weighing designs. Discuss. Math. 18 (1998), 179–185 | MR

[8] Hotelling H.: Some improvements in weighing and other experimental techniques. Ann. Math. Statist. 15 (1944), 297–305 | DOI | MR | Zbl

[9] Raghavarao D.: Constructions and Combinatorial Problems in Designs of Experiments. Wiley, New York 1971 | MR

[10] Saha G. M., Kageyama S.: Balanced arrays and weighing designs. Austral. J. Statist. 26 (1984), 119–124 | DOI | MR | Zbl

[11] Shah K. R., Sinha B. L.: Theory of Optimal Designs. Springer, Berlin 1989 | MR | Zbl

[12] Swamy M. N.: Use of balanced bipartite weighing designs as chemical balance designs. Comm. Statist. Theory Methods 11 (1982), 769–785 | DOI | MR | Zbl