Keywords: Bayesian inference; fault diagnostics; Poisson processes; reversible-jump MCMC
@article{KYB_2003_39_3_a6,
author = {Lahtinen, Jani and Lampinen, Jouko},
title = {Reversible jump {MCMC} for two-state multivariate {Poisson} mixtures},
journal = {Kybernetika},
pages = {307--315},
year = {2003},
volume = {39},
number = {3},
mrnumber = {1995735},
zbl = {1249.62009},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a6/}
}
Lahtinen, Jani; Lampinen, Jouko. Reversible jump MCMC for two-state multivariate Poisson mixtures. Kybernetika, Tome 39 (2003) no. 3, pp. 307-315. http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a6/
[1] Chen, Ming-Hui, Shao,, Qi-Man, Ibrahim J. Q.: Monte Carlo Methods in Bayesian Computation. Springer, New York 2000 | MR | Zbl
[2] Geman S., Geman D.: Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images. IEEE Trans. on Pattern Analysis and Machine Intelligence 64 (1984), 2, 721–741 | DOI | Zbl
[3] Green P.: Reversible jump Markov chain Monte Carlo computation, Bayesian model determination. Biometrika 82 (1995), 711–732, http://www.stats.bris.ac.uk/pub/reports/MCMC/revjump.ps | DOI | MR
[4] Marrs A. D.: An application of Reversible–Jump MCMC to multivariate spherical Gaussian mixtures. In: Advances in Neural Information Processing Systems 10 (M. I. Jordan, M. J. Kearns, and S. A. Solla, eds.), MIT Press, Cambridge, MA 1998
[5] Neal R. M.//Probabilistic Inference Using Markov Chain Monte Carlo Methods: Technical Report No. CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 1993, ftp:. ftp.cs.toronto.edu/pub/radford/review.ps.Z
[6] Robert C. P., Casella G.: Monte Carlo Statistical Methods. Springer–Verlag, New York 1999 | MR | Zbl
[7] Viallefont V., Richardson, S., Green P.: Bayesian analysis of Poisson mixtures. J. Nonparametric Statistics 14 (2002), 1-2, 181–202 | DOI | MR | Zbl