@article{KYB_2003_39_3_a5,
author = {Berkes, Istv\'an and Horv\'ath, Lajos},
title = {Approximations for the maximum of stochastic processes with drift},
journal = {Kybernetika},
pages = {299--306},
year = {2003},
volume = {39},
number = {3},
mrnumber = {1995734},
zbl = {1249.60075},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a5/}
}
Berkes, István; Horváth, Lajos. Approximations for the maximum of stochastic processes with drift. Kybernetika, Tome 39 (2003) no. 3, pp. 299-306. http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a5/
[1] Chow Y. S., Hsiung A. C.: Limiting behavior of $ \max _{j \le n} S_j/j^\alpha $ and the first passage times in a random walk with positive drift. Bull. Inst. Math. Acad. Sinica 4 (1976), 35–44 | MR
[2] Chow Y. S., Hsiung A. C., Yu K. F.: Limit theorems for a positively drifting process and its related first passage times. Bull. Inst. Math. Acad. Sinica 8 (1980), 141–172 | MR | Zbl
[3] Komlós J., Major, P., Tusnády G.: An approximation of partial sums of independent R. V.’s and the sample D.F.I. Z. Wahrschein. Verw. Gebiete 32 (1975), 111–131 | DOI | MR
[4] Komlós J., Major, P., Tusnády G.: An approximation of partial sums of independent R. V.’s and the sample D.F.I. Z. Wahrsch. Verw. Gebiete 34 (1976), 33–58 | DOI | MR
[5] Major P.: The approximation of partial sums of independent R. V.’s. Z. Wahrsch. Verw. Gebiete 35 (1976), 213–220 | DOI | MR | Zbl
[6] Teicher H.: A classical limit theorem without invariance or reflection. Ann. Probab. 1 (1973), 702–704 | DOI | MR | Zbl