An additive decomposition of fuzzy numbers
Kybernetika, Tome 39 (2003) no. 3, pp. 289-294 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Hong and Do[4] improved Mareš[7] result about additive decomposition of fuzzy quantities concerning an equivalence relation. But there still exists an open question which is the limitation to fuzzy quantities on R (the set of real numbers) with bounded supports in the presented theory. In this paper we restrict ourselves to fuzzy numbers, which are fuzzy quantities of the real line R with convex, normalized and upper semicontinuous membership function and prove this open question.
Hong and Do[4] improved Mareš[7] result about additive decomposition of fuzzy quantities concerning an equivalence relation. But there still exists an open question which is the limitation to fuzzy quantities on R (the set of real numbers) with bounded supports in the presented theory. In this paper we restrict ourselves to fuzzy numbers, which are fuzzy quantities of the real line R with convex, normalized and upper semicontinuous membership function and prove this open question.
Classification : 03E02, 03E72
Keywords: fuzzy number; fuzzy quantity; equivalence of fuzzy number
@article{KYB_2003_39_3_a3,
     author = {Hong, Dug Hun},
     title = {An additive decomposition of fuzzy numbers},
     journal = {Kybernetika},
     pages = {289--294},
     year = {2003},
     volume = {39},
     number = {3},
     mrnumber = {1995732},
     zbl = {1249.03094},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a3/}
}
TY  - JOUR
AU  - Hong, Dug Hun
TI  - An additive decomposition of fuzzy numbers
JO  - Kybernetika
PY  - 2003
SP  - 289
EP  - 294
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a3/
LA  - en
ID  - KYB_2003_39_3_a3
ER  - 
%0 Journal Article
%A Hong, Dug Hun
%T An additive decomposition of fuzzy numbers
%J Kybernetika
%D 2003
%P 289-294
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a3/
%G en
%F KYB_2003_39_3_a3
Hong, Dug Hun. An additive decomposition of fuzzy numbers. Kybernetika, Tome 39 (2003) no. 3, pp. 289-294. http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a3/

[1] Dubois D., Prade H.: Fuzzy Sets and Systems. Academic Press, New York – London 1980 | MR | Zbl

[2] Dubois D., Prade H.: Fuzzy numbers. An overview. In: Analysis of Fuzzy Information, Vol. I (J. Bezdek, ed.), CRS, Boca Raton 1987, pp. 3–39 | MR | Zbl

[3] Dubois D., Prade H.: Linear programming with fuzzy data. In: Analysis of Fuzzy Information, Vol. 3: Applications in Engineering and Science (J. Bezdek, ed.), CRS, Boca Raton 1987, pp. 241–261 | MR

[4] Hong D. H., Do H. Y.: Additive decomposition of fuzzy quantities. Inform. Sci. 88 (1996), 201–207 | DOI | MR | Zbl

[5] Kaufmann A., Gupta M. M.: Information to Fuzzy Arithmetic Theory and Application. Van Nostrand Reinhold, New York 1991 | MR

[6] Kaufmann A., Gupta M. M.: Fuzzy Mathematical Models in Engineering and Management Science. North–Holland, Amsterdam 1988 | MR | Zbl

[7] Mareš M.: Additive decomposition of fuzzy quantities with finite supports. Fuzzy Sets and Systems 47 (1992), 341–346 | DOI | MR

[8] Mareš M.: Additive of fuzzy quantities: disjunction-conjunction approach. Kybernetika 25 (1989), 1–12 | MR

[9] Mareš M., Horák J.: Fuzzy quantities in networks. Fuzzy Sets and Systems 10 (1993), 123–134 | DOI

[10] Mareš M.: Network analysis of fuzzy technologies. In: Fuzzy Methodologies for Industrial and Systems Engineering (G. Evans, W. Karwowski, and M. Wilhelm, eds.), Elsevier, Amsterdam 1989, pp. 115–125

[11] Mareš M.: How to satisfy fuzzy manager. Ekonomicko-matematický obzor 24 (1988), 396–404 | MR

[12] Pinter C. C.: Set Theory. Addition–Wesley, New York 1971 | MR | Zbl

[13] Rudin W.: Principles of Mathematical Analysis. McGraw–Hill, New York 1964 | MR | Zbl