Neutral functional integrodifferential control systems in Banach spaces
Kybernetika, Tome 39 (2003) no. 3, pp. 359-367 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Sufficient conditions for controllability of neutral functional integrodifferential systems in Banach spaces with initial condition in the phase space are established. The results are obtained by using the Schauder fixed point theorem. An example is provided to illustrate the theory.
Sufficient conditions for controllability of neutral functional integrodifferential systems in Banach spaces with initial condition in the phase space are established. The results are obtained by using the Schauder fixed point theorem. An example is provided to illustrate the theory.
Classification : 34K30, 34K35, 93B05, 93C23, 93C25
Keywords: controllability; phase space; neutral functional integrodifferential system; Schauder fixed point theorem
@article{KYB_2003_39_3_a11,
     author = {Balachandran, Krishnan and Anandhi, E. Radhakrishnan},
     title = {Neutral functional integrodifferential control systems in {Banach} spaces},
     journal = {Kybernetika},
     pages = {359--367},
     year = {2003},
     volume = {39},
     number = {3},
     mrnumber = {1995740},
     zbl = {1249.93016},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a11/}
}
TY  - JOUR
AU  - Balachandran, Krishnan
AU  - Anandhi, E. Radhakrishnan
TI  - Neutral functional integrodifferential control systems in Banach spaces
JO  - Kybernetika
PY  - 2003
SP  - 359
EP  - 367
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a11/
LA  - en
ID  - KYB_2003_39_3_a11
ER  - 
%0 Journal Article
%A Balachandran, Krishnan
%A Anandhi, E. Radhakrishnan
%T Neutral functional integrodifferential control systems in Banach spaces
%J Kybernetika
%D 2003
%P 359-367
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a11/
%G en
%F KYB_2003_39_3_a11
Balachandran, Krishnan; Anandhi, E. Radhakrishnan. Neutral functional integrodifferential control systems in Banach spaces. Kybernetika, Tome 39 (2003) no. 3, pp. 359-367. http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a11/

[1] Balachandran K., Dauer J. P., Balasubramaniam P.: Controllability of nonlinear integrodifferential systems in Banach spaces. J. Optim. Theory Appl. 84 (1995), 83–91 | DOI | MR

[2] Balachandran K., Dauer J. P., Balasubramaniam P.: Local null controllability of nonlinear functional differential systems in Banach spaces. J. Optim. Theory Appl. 88 (1995), 61–75 | DOI | MR

[3] Balachandran K., Sakthivel R.: Controllability of neutral functional integrodifferential systems in Banach Spaces. Comput. Math. Appl. 39 (2000), 117–126 | DOI | MR | Zbl

[4] Han H. K., Park J. Y., Park D. G.: Controllability of integrodifferential equations in Banach spaces. Bull. Korean Math. Soc. 36 (1999), 533–541 | MR | Zbl

[5] Hale J. K., Kato J.: Phase space for retarded equations with infinite delay. Funkcial. Ekvac. 21 (1978), 11–41 | MR | Zbl

[6] Henriquez H. R.: Periodic solutions of quasilinear partial functional differential equations with unbounded delay. Funkcial. Ekvac. 37 (1994), 329–343 | MR

[7] Henriquez H. R.: Regularity of solutions of abstract retarded functional differential equations with unbounded delay. Nonlinear Anal., Theory, Methods and Applications 28 (1997), 513–531 | DOI | MR | Zbl

[8] Hernandez E., Henriquez H. R.: Existence results for partial neutral functional differential equations with unbounded delay. J. Math. Anal. Appl. 221 (1998), 452–475 | DOI | MR | Zbl

[9] Hino Y., Murakami, S., Naito T.: Functional Differential Equations with Infinite Delay. (Lecture Notes in Mathematics 1473.) Springer–Verlag, Berlin 1991 | MR | Zbl

[10] Park J. Y., Han H. K.: Controllability of nonlinear functional integrodifferential systems in Banach spaces. Nihonkai Math. J. 8 (1997), 47–53 | MR

[11] Quinn M. D., Carmichael N.: An approach to nonlinear control problems using fixed point methods, degree theory and pseudo-inverse. Numer. Functional Anal. Optim. 7 (1984–1985), 197-219 | DOI | MR

[12] Shin J. S.: An existence theorem of functional differential equations with infinite delay in a Banach space. Funkcial. Ekvac. 30 (1987), 19–29 | MR | Zbl