Erlang distributed activity times in stochastic activity networks
Kybernetika, Tome 39 (2003) no. 3, pp. 347-358 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

It is assumed that activity times in stochastic activity networks (SANs) are independent Erlang random variable (r.v.). A recurrence method of determining the $k$th moments of the completion time is presented. Applications are provided for illustration and are used to evaluate the applicability and appropriateness of the Erlang model to represent activity network.
It is assumed that activity times in stochastic activity networks (SANs) are independent Erlang random variable (r.v.). A recurrence method of determining the $k$th moments of the completion time is presented. Applications are provided for illustration and are used to evaluate the applicability and appropriateness of the Erlang model to represent activity network.
Classification : 33B99, 60E05, 90B15, 90B35, 90C35, 90C39
Keywords: project planning; PERT; Erlang distribution
@article{KYB_2003_39_3_a10,
     author = {Abdelkader, Yousry H.},
     title = {Erlang distributed activity times in stochastic activity networks},
     journal = {Kybernetika},
     pages = {347--358},
     year = {2003},
     volume = {39},
     number = {3},
     mrnumber = {1995739},
     zbl = {1249.90305},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a10/}
}
TY  - JOUR
AU  - Abdelkader, Yousry H.
TI  - Erlang distributed activity times in stochastic activity networks
JO  - Kybernetika
PY  - 2003
SP  - 347
EP  - 358
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a10/
LA  - en
ID  - KYB_2003_39_3_a10
ER  - 
%0 Journal Article
%A Abdelkader, Yousry H.
%T Erlang distributed activity times in stochastic activity networks
%J Kybernetika
%D 2003
%P 347-358
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a10/
%G en
%F KYB_2003_39_3_a10
Abdelkader, Yousry H. Erlang distributed activity times in stochastic activity networks. Kybernetika, Tome 39 (2003) no. 3, pp. 347-358. http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a10/

[1] Bendell A., Solomon, D., Carter J. M.: Evaluating project completion times when activity times are Erlang distributed. J. Opl. Res. Soc. 46 (1995), 867–882 | DOI

[2] Devroye L. P.: Inequalities for the completion times of stochastic PERT networks. Math. Oper. Res. 4 (1979), 441–447 | DOI | MR | Zbl

[3] Elmaghraby S. E.: On the expected duration of PERT type networks. Management Sci. 13 (1967), 299–306 | DOI | Zbl

[4] Elmaghraby S. E.: The estimation of some network parameters in PERT model of activity network: review and critique. In: Advances in Project Scheduling, Chapter I, Part III (R. Slowinski and J. Weglarz, eds.), Elsevier, Amsterdam 1989, pp. 371–432 | MR

[5] Elmaghraby S. E.: On criticality and sensitivity in activity networks. European J. Oper. Res. 127 (2000), 220–238 | DOI | Zbl

[6] Fulkerson D. R.: Expected critical path lengths in PERT networks. Oper. Res. 10 (1962), 808–817 | DOI | Zbl

[7] Kamburowski J.: Normally distributed activity durations in PERT networks. J. Opl. Res. Soc. 36 (1985), 1051–1057 | DOI | Zbl

[8] Kamburowski J.: An upper bound on the expected completion time of PERT networks. European J. Oper. Res. 21 (1985), 2, 206–212 | DOI | MR | Zbl

[9] Kleinrock L.: In: Queuing Systems, Volume I. Wiley, New York 1975

[10] Kulkarni V. G., Adlakha V. G.: Markov and Markov regenerative PERT networks. Oper. Res. 34 (1986), 5, 769–781 | DOI | MR | Zbl

[11] Loulou R., Beale T.: A comparison of variance reducing techniques in PERT simulations. INFOR Canadian J. Opl. Res. 14 (1976), 259–269 | Zbl

[12] Magott J., Skudlarski K.: Estimating the mean completion time of PERT networks with exponentially distributed duration of activities. European J. Oper. Res. 71 (1993), 70–79 | DOI

[13] Robillard P.: Expected completion time in PERT networks. Oper. Res. 24 (1976), 177–182 | DOI | MR | Zbl

[14] Ross S. M.: Stochastic Process. Wiley, New York 1983

[15] Sculli D.: The completion time of PERT networks. J. Opl. Res. Soc. 34 (1983), 155–158 | DOI | Zbl

[16] Tavares L. V.: A review of the contribution of operational research to project management. European J. Oper. Res. 136 (2002), 1–18 | DOI | Zbl