A convergence of fuzzy random variables
Kybernetika, Tome 39 (2003) no. 3, pp. 275-280 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, a general convergence theorem of fuzzy random variables is considered. Using this result, we can easily prove the recent result of Joo et al, which gives generalization of a strong law of large numbers for sums of stationary and ergodic processes to the case of fuzzy random variables. We also generalize the recent result of Kim, which is a strong law of large numbers for sums of levelwise independent and levelwise identically distributed fuzzy random variables.
In this paper, a general convergence theorem of fuzzy random variables is considered. Using this result, we can easily prove the recent result of Joo et al, which gives generalization of a strong law of large numbers for sums of stationary and ergodic processes to the case of fuzzy random variables. We also generalize the recent result of Kim, which is a strong law of large numbers for sums of levelwise independent and levelwise identically distributed fuzzy random variables.
Classification : 60B12
Keywords: fuzzy number; fuzzy random variable; strong law of large numbers
@article{KYB_2003_39_3_a1,
     author = {Hong, Dug Hun},
     title = {A convergence of fuzzy random variables},
     journal = {Kybernetika},
     pages = {275--280},
     year = {2003},
     volume = {39},
     number = {3},
     mrnumber = {1995730},
     zbl = {1249.60007},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a1/}
}
TY  - JOUR
AU  - Hong, Dug Hun
TI  - A convergence of fuzzy random variables
JO  - Kybernetika
PY  - 2003
SP  - 275
EP  - 280
VL  - 39
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a1/
LA  - en
ID  - KYB_2003_39_3_a1
ER  - 
%0 Journal Article
%A Hong, Dug Hun
%T A convergence of fuzzy random variables
%J Kybernetika
%D 2003
%P 275-280
%V 39
%N 3
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a1/
%G en
%F KYB_2003_39_3_a1
Hong, Dug Hun. A convergence of fuzzy random variables. Kybernetika, Tome 39 (2003) no. 3, pp. 275-280. http://geodesic.mathdoc.fr/item/KYB_2003_39_3_a1/

[1] Artstein Z., Vitale R. A.: A strong law of large numbers for random compact sets. Ann. Probab. 13 (1985), 307–309 | MR

[2] Goetschel R., Voxman W.: Elementary fuzzy calculus. Fuzzy Sets and Systems 18 (1986), 31–43 | DOI | MR | Zbl

[3] Hiai F.: Strong laws of large numbers for multivalued fuzzy random variables (Lecture Notes in Mathematics 1091). Springer–Verlag, Berlin 1984, pp. 160–172 | DOI | MR

[4] Hong D. H., Kim H. J.: Marcinkiewicz-type law of large numbers for fuzzy random variables. Fuzzy Sets and Systems 64 (1994), 387–393 | DOI | MR | Zbl

[5] Inoue H.: A strong law of large numbers for fuzzy random sets. Fuzzy Sets and Systems 41 (1991), 285–291 | DOI | MR | Zbl

[6] Joo S. Y., Lee S. S., Yoo Y. H.: A strong law of large numbers for stationary fuzzy random variables. J. Korean Statist. Soc. 30 (2001), 153–161 | MR

[7] Joo S. Y., Kim Y. K.: The Skorokhod topology on space of fuzzy numbers. Fuzzy Sets and Systems 111 (2000), 497–501 | DOI | MR | Zbl

[8] Kim Y. K.: A strong law of large numbers for fuzzy random variables. Fuzzy Sets and Systems 111 (2000), 319–323 | MR

[9] Klement E. P., Puri M. L., Ralescu D. A.: Limit theorems for fuzzy random variables. Proc. Roy. Soc. London Ser. A 407 (1986), 171–182 | MR | Zbl

[10] Kruse R.: The strong law of large numbers for fuzzy random variables. Inform. Sci. 28 (1982), 233–241 | DOI | MR | Zbl

[11] Miyakoshi M., Shimbo M.: A strong law of large numbers for fuzzy random variables. Fuzzy Sets and Systems 12 (1984), 133–142 | DOI | MR | Zbl

[12] Molchanov I. S.: On strong law of large numbers for fuzzy random upper semi-continuous functions. J. Math. Anal. Appl. 235 (1999), 349–355 | DOI | MR

[13] Puri M. L., Ralescu D. A.: Strong law of large numbers for Banach space valued random sets. Ann. Probab. 11 (1983), 222–224 | DOI | MR | Zbl

[14] Puri M. L., Ralescu D. A.: Limit theorems for random compact set in Banach space. Math. Proc. Cambridge Philos. Soc. 97 (1985), 403–409 | MR

[15] Puri M. L., Ralescu D. A.: Fuzzy random variables. J. Math. Anal. Appl. 114 (1986), 402–422 | MR | Zbl

[16] Rao R. R.: The law of large numbers for $D[0,1]$-valued random variables. Theor. Probab. Appl. 8 (1963), 70–74 | DOI | Zbl

[17] Taylor R. L., Inoue H.: A strong law of large numbers for random sets in Banach spaces. Bull. Inst. Math., Academia Sinica 13 (1985), 403–409 | MR | Zbl

[18] Uemura T.: A law of large numbers for random sets. Fuzzy Sets and Systems 59 (1993), 181–188 | DOI | MR | Zbl