Keywords: discrete event systems; order-preserving homogeneous maps
@article{KYB_2003_39_2_a9,
author = {Burbanks, Andrew D. and Sparrow, Colin T. and Nussbaum, Roger D.},
title = {Continuous extension of order-preserving homogeneous maps},
journal = {Kybernetika},
pages = {205--215},
year = {2003},
volume = {39},
number = {2},
mrnumber = {1996558},
zbl = {1249.93123},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a9/}
}
Burbanks, Andrew D.; Sparrow, Colin T.; Nussbaum, Roger D. Continuous extension of order-preserving homogeneous maps. Kybernetika, Tome 39 (2003) no. 2, pp. 205-215. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a9/
[1] Burbanks A. D., Nussbaum R. D., Sparrow C. T.: Extension of order-preserving maps on a cone. Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), 35–59 | MR | Zbl
[2] Burbanks A. D., Sparrow C. T.: All Monotone Homogeneous Functions (on the Positive Cone) Admit Continuous Extension. Technical Report No. 1999-13, Statistical Laboratory, University of Cambridge 1999
[3] Crandall M. G., Tartar L.: Some relations between nonexpansive and order preserving mappings. Proc. Amer. Math. Soc. 78 (1980), 385–390 | DOI | MR | Zbl
[4] Gaubert S., Gunawardena J.: A Nonlinear Hierarchy for Discrete Event Systems. Technical Report No. HPL-BRIMS-98-20, BRIMS, Hewlett–Packard Laboratories, Bristol 1998
[5] Gunawardena J., Keane M.: On the Existence of Cycle Times for Some Nonexpansive Maps. Technical Report No. HPL-BRIMS-95-003, BRIMS, Hewlett–Packard Laboratories, Bristol 1995
[6] Nussbaum R. D.: Eigenvectors of Nonlinear Positive Operators and the Linear Krein–Rutman Theorem (Lecture Notes in Mathematics 886). Springer Verlag, Berlin 1981, pp. 309–331 | MR
[7] Nussbaum R. D.: Finsler structures for the part-metric and Hilbert’s projective metric, and applications to ordinary differential equations. Differential and Integral Equations 7 (1994), 1649–1707 | MR | Zbl
[8] Riesz F., Sz.-Nagy B.: Functional Analysis. Frederick Ungar Publishing Company, New York 1955 | MR | Zbl
[9] Thompson A. C.: On certain contraction mappings in a partially ordered vector space. Proc. Amer. Math. Soc. 14 (1963), 438–443 | MR | Zbl