Iterates of maps which are non-expansive in Hilbert's projective metric
Kybernetika, Tome 39 (2003) no. 2, pp. 193-204 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

The cycle time of an operator on $R^n$ gives information about the long term behaviour of its iterates. We generalise this notion to operators on symmetric cones. We show that these cones, endowed with either Hilbert’s projective metric or Thompson’s metric, satisfy Busemann’s definition of a space of non- positive curvature. We then deduce that, on a strictly convex symmetric cone, the cycle time exists for all maps which are non-expansive in both these metrics. We also review an analogue for the Hilbert metric of the Denjoy-Wolff theorem.
The cycle time of an operator on $R^n$ gives information about the long term behaviour of its iterates. We generalise this notion to operators on symmetric cones. We show that these cones, endowed with either Hilbert’s projective metric or Thompson’s metric, satisfy Busemann’s definition of a space of non- positive curvature. We then deduce that, on a strictly convex symmetric cone, the cycle time exists for all maps which are non-expansive in both these metrics. We also review an analogue for the Hilbert metric of the Denjoy-Wolff theorem.
Classification : 47H09, 53C60
Keywords: Hilbert geometry; Thompson’s part metric; non-expansive map; symmetric cone; cycle time; topical map; iterates
@article{KYB_2003_39_2_a8,
     author = {Gunawardena, Jeremy and Walsh, Cormac},
     title = {Iterates of maps which are non-expansive in {Hilbert's} projective metric},
     journal = {Kybernetika},
     pages = {193--204},
     year = {2003},
     volume = {39},
     number = {2},
     mrnumber = {1996557},
     zbl = {1247.47030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a8/}
}
TY  - JOUR
AU  - Gunawardena, Jeremy
AU  - Walsh, Cormac
TI  - Iterates of maps which are non-expansive in Hilbert's projective metric
JO  - Kybernetika
PY  - 2003
SP  - 193
EP  - 204
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a8/
LA  - en
ID  - KYB_2003_39_2_a8
ER  - 
%0 Journal Article
%A Gunawardena, Jeremy
%A Walsh, Cormac
%T Iterates of maps which are non-expansive in Hilbert's projective metric
%J Kybernetika
%D 2003
%P 193-204
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a8/
%G en
%F KYB_2003_39_2_a8
Gunawardena, Jeremy; Walsh, Cormac. Iterates of maps which are non-expansive in Hilbert's projective metric. Kybernetika, Tome 39 (2003) no. 2, pp. 193-204. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a8/

[1] Beardon A. F.: The dynamics of contractions. Ergodic Theory Dynamical Systems 17 (1997), 6, 1257–1266 | DOI | MR | Zbl

[2] Bhagwat K. V., Subramanian R.: Inequalities between means of positive operators. Math. Proc. Cambridge Philos. Soc. 83 (1978), 3, 393–401 | DOI | MR | Zbl

[3] Busemann H.: The Geometry of Geodesics. Academic Press, New York 1955 | MR | Zbl

[4] Corach G., Porta, H., Recht L.: A geometric interpretation of Segal’s inequality. Proc. Amer. Math. Soc. 115 (1992), 1, 229–231 | MR | Zbl

[5] Corach G., Porta, H., Recht L.: Convexity of the geodesic distance on spaces of positive operators. Illinois J. Math. 38 (1994), 1, 87–94 | MR | Zbl

[6] Donoghue W. F.: Monotone Matrix Functions and Analytic Continuation. Springer–Verlag, Berlin 1974 | MR | Zbl

[7] Faraut J., Korányi A.: Analysis on Symmetric Cones. Oxford, 1994 | MR | Zbl

[8] Gaubert S., Gunawardena J.: A non-linear hierarchy for discrete event dynamical systems. In: Proceedings WODES’98, Cagliari 1998

[9] Gunawardena J.: From max-plus algebra to nonexpansive mappings: a nonlinear theory for discrete event systems. Theoret. Comput. Sci. 293 (2003), 141–167 | DOI | MR | Zbl

[10] Gunawardena J., Keane M.: On the Existence of Cycle Times for Some Nonexpansive Maps. HPL-BRIMS-95-03, Hewlett-Packard Labs, 1995

[11] Kohlberg E., Neyman A.: Asymptotic behavior of nonexpansive mappings in normed linear spaces. Israel J. Math. 38 (1981), 4, 269–275 | DOI | MR | Zbl

[12] Nussbaum R. D.: Hilbert’s Projective Metric and Iterated Nonlinear Maps. Amer. Math. Soc., 1998 | Zbl

[13] Nussbaum R. D.: Finsler structures for the part metric and Hilbert’s projective metric and applications to ordinary differential equations. Differential and Int. Equations 7 (1994), 6, 1649–1707 | MR | Zbl

[14] Plant A. T., Reich S.: The asymptotics of nonexpansive iterations. J. Func. Anal. 54 (1983), 3, 308–319 | DOI | MR | Zbl

[15] Reich S., Shafrir I.: Nonexpansive Iterations in Hyperbolic Spaces. Nonlinear Anal., Theory, Methods & Appls 15 (1990), 6, 537–558 | DOI | MR | Zbl

[16] Sine R.: Behavior of iterates in the Poincaré metric. Houston J. Math. 15 (1989), 2, 273–289 | MR | Zbl