Some representations for series on idempotent semirings - or how to go beyond recognizability keeping representability
Kybernetika, Tome 39 (2003) no. 2, pp. 177-192 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we compare different types of representations for series with coefficients in complete idempotent semirings. Each of these representations was introduced to solve a particular problem. We show how they are or are not included one in the other and we present a common generalization of them.
In this article, we compare different types of representations for series with coefficients in complete idempotent semirings. Each of these representations was introduced to solve a particular problem. We show how they are or are not included one in the other and we present a common generalization of them.
Classification : 13F25, 93B25, 93C65
Keywords: idempotent semirings; recognizable series
@article{KYB_2003_39_2_a7,
     author = {Klimann, Ines},
     title = {Some representations for series on idempotent semirings - or how to go beyond recognizability keeping representability},
     journal = {Kybernetika},
     pages = {177--192},
     year = {2003},
     volume = {39},
     number = {2},
     mrnumber = {1996556},
     zbl = {1249.93043},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a7/}
}
TY  - JOUR
AU  - Klimann, Ines
TI  - Some representations for series on idempotent semirings - or how to go beyond recognizability keeping representability
JO  - Kybernetika
PY  - 2003
SP  - 177
EP  - 192
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a7/
LA  - en
ID  - KYB_2003_39_2_a7
ER  - 
%0 Journal Article
%A Klimann, Ines
%T Some representations for series on idempotent semirings - or how to go beyond recognizability keeping representability
%J Kybernetika
%D 2003
%P 177-192
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a7/
%G en
%F KYB_2003_39_2_a7
Klimann, Ines. Some representations for series on idempotent semirings - or how to go beyond recognizability keeping representability. Kybernetika, Tome 39 (2003) no. 2, pp. 177-192. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a7/

[1] Berstel J.: Transductions and Context–Free Languages. Teubner, Stuttgart 1979 | MR | Zbl

[2] Berstel J., Reutenauer C.: Les séries rationnelles et leurs langages. Masson, Paris 1984. English translation: Rational Series and Their Languages, Springer–Verlag, Berlin 1988 | MR | Zbl

[3] Blyth T. S., Janowitz M. F.: Residuation Theory. Pergamon Press, Oxford 1972 | MR | Zbl

[4] Eilenberg S.: Automata, Languages and Machines, vol. A. Academic Press, New York 1974 | MR | Zbl

[5] Gunawardena J.: An introduction to idempotency, in idempotency. Chapter 1 (J. Gunawardena, ed.), Cambridge University Press, Cambridge 1998 | MR

[6] Klimann I.: New types of automata to solve fixed point problems. Theoret. Comput. Sci. 259 (2001), 1–2, 183–197 | DOI | MR | Zbl

[7] Klimann I.: A solution to the problem of $(A,B)$-invariance for series. Theoret. Comput. Sci. 293 (2003), 1, 115–139 | DOI | MR | Zbl

[8] Kobayashi N.: The closure under division and a characterization of the recognizable ${\mathcal Z}$-subsets. RAIRO Inform. Théor. Appl. 30 (1996), 3, 209–230 | MR

[9] Pin J.-E., Sakarovitch J.: Une application de la représentation matricielle des transductions. Theoret. Comp. Sci. 35 (1985), 271–293 | DOI | MR | Zbl

[10] Salomaa A., Soittola M.: Automata–Theoretical Aspects of Formal Power Series. Springer–Verlag, Berlin 1978 | MR