On timed event graph stabilization by output feedback in dioid
Kybernetika, Tome 39 (2003) no. 2, pp. 165-176 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper deals with output feedback synthesis for Timed Event Graphs (TEG) in dioid algebra. The feedback synthesis is done in order to (1) stabilize a TEG without decreasing its original production rate, (2) optimize the initial marking of the feedback, (3) delay as much as possible the tokens input.
This paper deals with output feedback synthesis for Timed Event Graphs (TEG) in dioid algebra. The feedback synthesis is done in order to (1) stabilize a TEG without decreasing its original production rate, (2) optimize the initial marking of the feedback, (3) delay as much as possible the tokens input.
Classification : 06F05, 93B25, 93B52, 93C65, 93D15
Keywords: Time Event Graphs; max-plusalgebra; feedback synthesis
@article{KYB_2003_39_2_a6,
     author = {Cottenceau, B. and Lhommeau, M. and Hardouin, L. and Boimond, J.-L.},
     title = {On timed event graph stabilization by output feedback in dioid},
     journal = {Kybernetika},
     pages = {165--176},
     year = {2003},
     volume = {39},
     number = {2},
     mrnumber = {1996555},
     zbl = {1249.93041},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a6/}
}
TY  - JOUR
AU  - Cottenceau, B.
AU  - Lhommeau, M.
AU  - Hardouin, L.
AU  - Boimond, J.-L.
TI  - On timed event graph stabilization by output feedback in dioid
JO  - Kybernetika
PY  - 2003
SP  - 165
EP  - 176
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a6/
LA  - en
ID  - KYB_2003_39_2_a6
ER  - 
%0 Journal Article
%A Cottenceau, B.
%A Lhommeau, M.
%A Hardouin, L.
%A Boimond, J.-L.
%T On timed event graph stabilization by output feedback in dioid
%J Kybernetika
%D 2003
%P 165-176
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a6/
%G en
%F KYB_2003_39_2_a6
Cottenceau, B.; Lhommeau, M.; Hardouin, L.; Boimond, J.-L. On timed event graph stabilization by output feedback in dioid. Kybernetika, Tome 39 (2003) no. 2, pp. 165-176. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a6/

[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity: An Algebra for Discrete Event Systems. Wiley, New York 1992 | MR | Zbl

[2] Blyth T. S., Janowitz M. F.: Residuation Theory. Pergamon Press, Oxford 1972 | MR | Zbl

[3] Cohen G., Moller P., Quadrat J. P., Viot M.: Linear system theory for discrete-event systems. In: Proc. 23rd IEEE Conference on Decision and Control, Las Vegas 1984

[4] Cohen G., Moller P., Quadrat J. P., Viot M.: Algebraic tools for the performance evaluation of discrete event systems. IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1, 39–58

[5] Commault C.: Feedback stabilization of some event graph models. IEEE Trans. Automat. Control 43 (1998), 10, 1419–1423 | DOI | MR | Zbl

[6] Cottenceau B.: Contribution à la commande de systèmes à événements discrets: synthèse de correcteurs pour les graphes d’événements temporisés dans les dioïdes. Ph.D. Thesis (in French). ISTIA, Université d’Angers 1999

[7] Cottenceau B., Hardouin L., Boimond J. L., Ferrier J. L.: Synthesis of greatest linear feedback for timed event graphs in dioid. IEEE Trans. Automat. Control 44 (1999), 6, 1258–1262 | DOI | MR | Zbl

[8] Gaubert S.: Théorie des systèmes linéaires dans les dioïdes. Ph.D. Thesis (in French). Ecole des Mines de Paris, Paris 1992

[9] Gaubert S.: Resource optimization and $(\min ,+)$ spectral theory. IEEE Trans. Automat. Control 40 (1992), 11, 1931–1934 | DOI | MR

[10] series, Software tools for manipulating periodic: http:--www</b> istia.univ-angers.fr/$\tilde{}$hardouin/outils.html

[11] Plus, Max: Second order theory of min-linear systems and its application to discrete event systems. In: Proc. 30th IEEE Conference on Decision and Control, Brighton 1991