Models combination in (max,+) algebra for the implementation of a simulation and analysis software
Kybernetika, Tome 39 (2003) no. 2, pp. 143-154 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper presents a modeling methodology in (max,+) algebra which has been developed in order to implement a modulary software for the simulation and the analysis of electronic cards production lines. More generally, this approach may be applied to hybrid flowshop type manufacturing systems.
This paper presents a modeling methodology in (max,+) algebra which has been developed in order to implement a modulary software for the simulation and the analysis of electronic cards production lines. More generally, this approach may be applied to hybrid flowshop type manufacturing systems.
Classification : 06F05, 93A30, 93C65
Keywords: discrete event systems; max-plus algebra; assemblylines; modeling; simulation
@article{KYB_2003_39_2_a4,
     author = {Lahaye, S\'ebastien and Hardouin, Laurent and Boimond, Jean-Louis},
     title = {Models combination in (max,+) algebra for the implementation of a simulation and analysis software},
     journal = {Kybernetika},
     pages = {143--154},
     year = {2003},
     volume = {39},
     number = {2},
     mrnumber = {1996553},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a4/}
}
TY  - JOUR
AU  - Lahaye, Sébastien
AU  - Hardouin, Laurent
AU  - Boimond, Jean-Louis
TI  - Models combination in (max,+) algebra for the implementation of a simulation and analysis software
JO  - Kybernetika
PY  - 2003
SP  - 143
EP  - 154
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a4/
LA  - en
ID  - KYB_2003_39_2_a4
ER  - 
%0 Journal Article
%A Lahaye, Sébastien
%A Hardouin, Laurent
%A Boimond, Jean-Louis
%T Models combination in (max,+) algebra for the implementation of a simulation and analysis software
%J Kybernetika
%D 2003
%P 143-154
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a4/
%G en
%F KYB_2003_39_2_a4
Lahaye, Sébastien; Hardouin, Laurent; Boimond, Jean-Louis. Models combination in (max,+) algebra for the implementation of a simulation and analysis software. Kybernetika, Tome 39 (2003) no. 2, pp. 143-154. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a4/

[1] Baccelli F., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity. Wiley, New York 1992 | MR | Zbl

[2] Cohen G., Moller P., Quadrat J. P., Viot M.: Algebraic tools for the performance evaluation of discrete event systems. IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 1

[3] Cottenceau B.: Contribution à la commande de systèmes événements discrets: synthèse de correcteurs pour les graphes d’événements temporisés dans les dioïdes. Ph. D. Thesis. ISTIA – Université d’Angers, 1999

[4] Coninghame–Green R. A.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166). Springer, Berlin 1979 | MR

[5] Ferrier J. L., Lahaye S., Hardouin, L., Boimond J. L.: MAISTer: a user-fiendly software package for performance analysis and decision, based on $(\max ,+)$. In: Proceddings of the SMS’2000, IEEE Conference on Systems Man and Cybernetics, Nashville 2000

[6] Kamen E. W.: Fundamentals of linear time-varying systems. In: The Control Handbook (W. S. Levine, ed.), IEEE Press and CRC Press, 1996

[7] Lahaye S.: Contribution à l’étude des systèmes linéaires non stationnaires dans l’algèbre des dioïdes. Ph. D. Thesis. ISTIA – Université d’Angers, 2000

[8] Lahaye S., Boimond J. L., Hardouin L.: Analysis of periodic discrete event systems in $(\max ,+)$ algebra. In: Proceedings of WODES’2000, Ghent 2000 | Zbl

[9] synchronization, Max-Plus. A linear system for systems subject to, In, saturation constraints.: Proceedings of the First European Conference, Grenoble 199.

[10] Menguy E., Boimond J. L., Hardouin, L., Ferrier J. L.: Just in time control of linear systems and diod: cases of an updata of reference input and unctrollable input. IEEE Trans. Automat. Control 45 (2000), 11, 2155–2159 | DOI | MR

[11] Murata T.: Petri nets: Properties, analysis and applications. IEEE Proceedings: Special Issue on Discrete Event Systems 77 (1989), 541–580