Keywords: discrete-event dynamic systems; max-plus algebra; systems of linear equations; approximation
@article{KYB_2003_39_2_a3,
author = {Cechl\'arov\'a, Katar{\'\i}na and Cuninghame-Green, Ray A.},
title = {Soluble approximation of linear systems in max-plus algebra},
journal = {Kybernetika},
pages = {137--141},
year = {2003},
volume = {39},
number = {2},
mrnumber = {1996552},
zbl = {1249.93040},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a3/}
}
Cechlárová, Katarína; Cuninghame-Green, Ray A. Soluble approximation of linear systems in max-plus algebra. Kybernetika, Tome 39 (2003) no. 2, pp. 137-141. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a3/
[1] Baccelli F. L., Cohen G., Olsder G. J., Quadrat J. P.: Synchronization and Linearity, An Algebra for Discrete Event Systems. Wiley, Chichester 1992 | MR | Zbl
[2] Cechlárová K.: A note on unsolvable systems of max-min (fuzzy) equations. Linear Algebra Appl. 310 (2000), 123–128 | MR | Zbl
[3] Cechlárová K., Diko P.: Resolving infeasibility in extremal algebras. Linear Algebra Appl. 290 (1999), 267–273 | MR | Zbl
[4] A.Cuninghame-Green R.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166). Springer, Berlin 1979 | MR
[5] Cuninghame-Green R. A., Cechlárová K.: Residuation in fuzzy algebra and some applications. Fuzzy Sets and Systems 71 (1995), 227–239 | MR | Zbl
[6] Schutter B. De: Max-Algebraic System Theory for Discrete Event Systems. Thesis. Katholieke Universiteit Leuven, Belgium 1996