Keywords: matrix; characteristicpolynomial; characteristic equation
@article{KYB_2003_39_2_a2,
author = {Butkovi\v{c}, Peter},
title = {On the coefficients of the max-algebraic characteristic polynomial and equation},
journal = {Kybernetika},
pages = {129--136},
year = {2003},
volume = {39},
number = {2},
mrnumber = {1996551},
zbl = {1249.90213},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a2/}
}
Butkovič, Peter. On the coefficients of the max-algebraic characteristic polynomial and equation. Kybernetika, Tome 39 (2003) no. 2, pp. 129-136. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a2/
[1] Ahuja R. K., Magnanti, T., Orlin J. B.: Network Flows: Theory, Algorithms and Applications. Prentice Hall, Englewood Cliffs, N.J. 1993 | MR | Zbl
[2] Baccelli F. L., Cohen G., Olsder G.-J., Quadrat J.-P.: Synchronization and Linearity. Wiley, Chichester 1992 | MR | Zbl
[3] Butkovič P., Murfitt L.: Calculating essential terms of a characteristic maxpolynomial. Central European Journal of Operations Research 8 (2000), 237–246 | MR | Zbl
[4] Cuninghame–Green R. A.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166). Springer, Berlin 1979 | MR
[5] Cuninghame–Green R. A.: The characteristic maxpolynomial of a matrix. J. Math. Anal. Appl. 95 (1983), 110-116 | DOI | MR | Zbl
[6] Klinz B.: Private communication (2002.
[7] (Ed.) J. van Leeuwen: Handbook of Theoretical Computer Science – Vol. A: Algorithms and Complexity. Elsevier, Amsterdam and MIT Press, Cambridge, MA 1990 | MR | Zbl
[8] Murfitt L.: Discrete-Event Dynamic Systems in Max-Algebra: Realisation and Related Combinatorial Problems. Thesis. The University of Birmingham, 2000
[9] Zimmermann U.: Linear and Combinatorial Optimization in Ordered Algebraic Structures (Annals of Discrete Mathematics 10). North Holland, Amsterdam 1981 | MR