Keywords: complex calculus of variation; Hamilton-Jacobi equations
@article{KYB_2003_39_2_a12,
author = {Gondran, Michel and Saade, Rita Hoblos},
title = {Complex calculus of variations},
journal = {Kybernetika},
pages = {249--263},
year = {2003},
volume = {39},
number = {2},
mrnumber = {1996561},
zbl = {1249.49002},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a12/}
}
Gondran, Michel; Saade, Rita Hoblos. Complex calculus of variations. Kybernetika, Tome 39 (2003) no. 2, pp. 249-263. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a12/
[1] Balian R., Bloch C.: Solution of the Schrödinger Equation in Terms of Classical Paths. Academic Press, New York 1974 | MR | Zbl
[2] Evans L. C.: Partial Differential Equations. (Graduate Studies in Mathematics 19.) American Mathematical Society, 1998 | MR
[3] Gondran M.: Convergences de fonctions valeurs dans $\Re ^k$ et analyse Minplus complexe. C.R. Acad. Sci., Paris 1999, t. 329, série I, pp. 783–777 | DOI | MR
[4] Gondran M.: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I, pp. 677–680 | DOI | MR | Zbl
[5] Lions P. L.: Generalized Solutions of Hamilton–Jacobi Equations. (Research Notes in Mathematics 69.) Pitman, London 1982 | MR | Zbl
[6] Voros A.: The return of the quadratic oscillator. The complex WKB method. Ann. Inst. H. Poincaré Phys. Théor. 39 (1983), 3, 211–338 | MR