Complex calculus of variations
Kybernetika, Tome 39 (2003) no. 2, pp. 249-263 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to ${\mathbf{C}}^n$ functions in ${\mathbf{C}}$. It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions to complex Hamilton-Jacobi equations, in particular by generalizing the Hopf-Lax formula.
In this article, we present a detailed study of the complex calculus of variations introduced in [M. Gondran: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I]. This calculus is analogous to the conventional calculus of variations, but is applied here to ${\mathbf{C}}^n$ functions in ${\mathbf{C}}$. It is based on new concepts involving the minimum and convexity of a complex function. Such an approach allows us to propose explicit solutions to complex Hamilton-Jacobi equations, in particular by generalizing the Hopf-Lax formula.
Classification : 06F05, 30C70, 35F25, 49J10, 49L20, 93B27
Keywords: complex calculus of variation; Hamilton-Jacobi equations
@article{KYB_2003_39_2_a12,
     author = {Gondran, Michel and Saade, Rita Hoblos},
     title = {Complex calculus of variations},
     journal = {Kybernetika},
     pages = {249--263},
     year = {2003},
     volume = {39},
     number = {2},
     mrnumber = {1996561},
     zbl = {1249.49002},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a12/}
}
TY  - JOUR
AU  - Gondran, Michel
AU  - Saade, Rita Hoblos
TI  - Complex calculus of variations
JO  - Kybernetika
PY  - 2003
SP  - 249
EP  - 263
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a12/
LA  - en
ID  - KYB_2003_39_2_a12
ER  - 
%0 Journal Article
%A Gondran, Michel
%A Saade, Rita Hoblos
%T Complex calculus of variations
%J Kybernetika
%D 2003
%P 249-263
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a12/
%G en
%F KYB_2003_39_2_a12
Gondran, Michel; Saade, Rita Hoblos. Complex calculus of variations. Kybernetika, Tome 39 (2003) no. 2, pp. 249-263. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a12/

[1] Balian R., Bloch C.: Solution of the Schrödinger Equation in Terms of Classical Paths. Academic Press, New York 1974 | MR | Zbl

[2] Evans L. C.: Partial Differential Equations. (Graduate Studies in Mathematics 19.) American Mathematical Society, 1998 | MR

[3] Gondran M.: Convergences de fonctions valeurs dans $\Re ^k$ et analyse Minplus complexe. C.R. Acad. Sci., Paris 1999, t. 329, série I, pp. 783–777 | DOI | MR

[4] Gondran M.: Calcul des variations complexe et solutions explicites d’équations d’Hamilton–Jacobi complexes. C.R. Acad. Sci., Paris 2001, t. 332, série I, pp. 677–680 | DOI | MR | Zbl

[5] Lions P. L.: Generalized Solutions of Hamilton–Jacobi Equations. (Research Notes in Mathematics 69.) Pitman, London 1982 | MR | Zbl

[6] Voros A.: The return of the quadratic oscillator. The complex WKB method. Ann. Inst. H. Poincaré Phys. Théor. 39 (1983), 3, 211–338 | MR