Rational algebra and MM functions
Kybernetika, Tome 39 (2003) no. 2, pp. 123-128 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

MM functions, formed by finite composition of the operators min, max and translation, represent discrete-event systems involving disjunction, conjunction and delay. The paper shows how they may be formulated as homogeneous rational algebraic functions of degree one, over (max, +) algebra, and reviews the properties of such homogeneous functions, illustrated by some orbit-stability problems.
MM functions, formed by finite composition of the operators min, max and translation, represent discrete-event systems involving disjunction, conjunction and delay. The paper shows how they may be formulated as homogeneous rational algebraic functions of degree one, over (max, +) algebra, and reviews the properties of such homogeneous functions, illustrated by some orbit-stability problems.
Classification : 06F05, 15A80, 93B27, 93C65, 93D20
Keywords: algebraic systems theory; discrete-event dynamicsystems; asymptotic stability
@article{KYB_2003_39_2_a1,
     author = {Cuninghame-Green, Ray A.},
     title = {Rational algebra and {MM} functions},
     journal = {Kybernetika},
     pages = {123--128},
     year = {2003},
     volume = {39},
     number = {2},
     mrnumber = {1996550},
     zbl = {1249.93124},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a1/}
}
TY  - JOUR
AU  - Cuninghame-Green, Ray A.
TI  - Rational algebra and MM functions
JO  - Kybernetika
PY  - 2003
SP  - 123
EP  - 128
VL  - 39
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a1/
LA  - en
ID  - KYB_2003_39_2_a1
ER  - 
%0 Journal Article
%A Cuninghame-Green, Ray A.
%T Rational algebra and MM functions
%J Kybernetika
%D 2003
%P 123-128
%V 39
%N 2
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a1/
%G en
%F KYB_2003_39_2_a1
Cuninghame-Green, Ray A. Rational algebra and MM functions. Kybernetika, Tome 39 (2003) no. 2, pp. 123-128. http://geodesic.mathdoc.fr/item/KYB_2003_39_2_a1/

[1] Baccelli F. L., Cohen G., Olsder G.-J., Quadrat J.-P.: Synchronization and Linearity, An Algebra for Discrete Event Systems. Wiley, Chichester 1992 | MR | Zbl

[2] Cuninghame-Green R. A.: Minimax Algebra (Lecture Notes in Economics and Mathematical Systems 166). Springer–Verlag, Berlin 1979 | MR

[3] Cuninghame-Green R. A., Meijer P. F. J.: An algebra for piecewise-linear minimax problems. Discrete Appl. Math. 2 (1980), 267–294 | DOI | MR | Zbl

[4] Cuninghame-Green R. A.: Minimax algebra and applications. In: Advances in Imaging and Electron Physics 90 (P. W. Hawkes, ed.), Academic Press, New York 1995 | Zbl

[5] Cuninghame-Green R. A.: Maxpolynomial equations. Fuzzy Sets and Systems 75 (1995), 179–187 | DOI | MR | Zbl

[6] Gaubert S., Gunawardena J.: The duality theorem for min-max functions. C. R. Acad. Sci. Paris 326 (1998), 43–48 | DOI | MR | Zbl

[7] Manber U.: Introduction to Algorithms. Addison–Wesley, New York 1989 | MR | Zbl