On continuous convergence and epi-convergence of random functions. Part I: Theory and relations
Kybernetika, Tome 39 (2003) no. 1, pp. 75-98 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization.
Continuous convergence and epi-convergence of sequences of random functions are crucial assumptions if mathematical programming problems are approximated on the basis of estimates or via sampling. The paper investigates “almost surely” and “in probability” versions of these convergence notions in more detail. Part I of the paper presents definitions and theoretical results and Part II is focused on sufficient conditions which apply to many models for statistical estimation and stochastic optimization.
Classification : 60B10, 62G05, 90C15, 90C31
Keywords: continuous convergence; epi-convergence; stochastic programming; stability
@article{KYB_2003_39_1_a5,
     author = {Vogel, Silvia and Lachout, Petr},
     title = {On continuous convergence and epi-convergence of random functions. {Part} {I:} {Theory} and relations},
     journal = {Kybernetika},
     pages = {75--98},
     year = {2003},
     volume = {39},
     number = {1},
     mrnumber = {1980125},
     zbl = {1249.90184},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a5/}
}
TY  - JOUR
AU  - Vogel, Silvia
AU  - Lachout, Petr
TI  - On continuous convergence and epi-convergence of random functions. Part I: Theory and relations
JO  - Kybernetika
PY  - 2003
SP  - 75
EP  - 98
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a5/
LA  - en
ID  - KYB_2003_39_1_a5
ER  - 
%0 Journal Article
%A Vogel, Silvia
%A Lachout, Petr
%T On continuous convergence and epi-convergence of random functions. Part I: Theory and relations
%J Kybernetika
%D 2003
%P 75-98
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a5/
%G en
%F KYB_2003_39_1_a5
Vogel, Silvia; Lachout, Petr. On continuous convergence and epi-convergence of random functions. Part I: Theory and relations. Kybernetika, Tome 39 (2003) no. 1, pp. 75-98. http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a5/

[1] Attouch H.: Variational Convergence for Functions and Operators. Pitman, London 1984 | MR | Zbl

[2] Artstein Z., Wets R. J.-B.: Stability results for stochastic programs and sensors, allowing for discontinuous objective functions. SIAM J. Optim. 4 (1994), 537-550 | DOI | MR | Zbl

[3] Artstein Z., Wets R. J.-B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Analysis 2 (1995), 1–17 | MR | Zbl

[4] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.: Non-Linear Parametric Optimization. Akademie Verlag, Berlin 1982 | Zbl

[5] Beer G.: Topologies on Closed and Closed Convex Sets. Kluwer, Dordrecht 1993 | MR | Zbl

[6] Cohn D. L.: Measure Theory. Birkhäuser, Boston 1980 | MR | Zbl

[7] Dupačová J.: Stability and sensitivity analysis in stochastic programming. Ann. Oper. Res. 27 (1990), 115–142 | DOI | MR

[8] Dupačová J., Wets R. J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic problems. Ann. Statist. 16 (1988), 1517–1549 | DOI | MR

[9] Kall P.: Approximations to optimization problems: An elementary review. Math. Oper. Res. 11 (1986), 9–18 | DOI | MR

[10] Kall P.: On approximations and stability in stochastic programming. In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 86–103 | MR | Zbl

[11] Kaniovski Y. M., King A. J., Wets R. J.-B.: Probabilistic bounds (via large deviations) for the solution of stochastic programming problems. Ann. Oper. Res. 56 (1995), 189–208 | DOI | MR

[12] Kaňková V., Lachout P.: Convergence rate of empirical estimates in stochastic programming. Informatica 3 (1992), 497–523 | MR | Zbl

[13] King A. J., Wets R. J.-B.: Epi-consistency of convex stochastic programs. Stochastics and Stochastics Reports 34 (1991), 83–92 | DOI | MR | Zbl

[14] Langen H.-J.: Convergence of dynamic programming models. Math. Oper. Res. 6 (1981), 493–512 | DOI | MR | Zbl

[15] Pflug G. Ch., Ruszczyňski, A., Schultz R.: On the Glivenko-Cantelli problem in stochastic programming: Linear recourse and extensions. Math. Oper. Res. 23 (1998), 204–220 | DOI | MR | Zbl

[16] Robinson S. M.: Local epi-continuity and local optimization. Math. Programming 37 (1987), 208–222 | DOI | MR | Zbl

[17] Robinson S. M., Wets R. J.-B.: Stability in two-stage stochastic programming. SIAM J. Control Optim. 25 (1987), 1409–1416 | DOI | MR | Zbl

[18] Rockafellar R. T., Wets R. J.-B.: Variational Analysis. Springer–Verlag, Berlin 1998 | MR | Zbl

[19] Römisch W., Schultz R.: Distribution sensitivity in stochastic programming. Math. Programming 50 (1991), 197–226 | DOI | MR | Zbl

[20] Römisch W., Schultz R.: Stability of solutions for stochastic programs with complete recourse. Math. Oper. Res. 18 (1993), 590–609 | DOI | MR | Zbl

[21] Römisch W., Schultz R.: Lipschitz stability for stochastic programs with complete recourse. SIAM J. Optim. 6 (1996), 531–447 | DOI | MR | Zbl

[22] Römisch W., Wakolbinger A.: Obtaining convergence rates for approximations in stochastic programming. In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 327–343 | MR

[23] Salinetti G., Wets R. J.-B.: On the convergence of closed-valued measurable multifunctions. Trans. Amer. Math. Soc. 266 (1981), 275–289 | MR | Zbl

[24] Salinetti G., Wets R. J-B.: On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 (1986), 385–419 | DOI | MR | Zbl

[25] Vogel S.: Stochastische Stabilitätskonzepte. Habilitation, Ilmenau Technical University, 1991

[26] Vogel S.: On stability in multiobjective programming – A stochastic approach. Math. Programming 56 (1992), 91–119 | DOI | MR | Zbl

[27] Vogel S.: A stochastic approach to stability in stochastic programming. J. Comput. Appl. Math., Series Appl. Analysis and Stochastics 56 (1994), 65–96 | MR | Zbl

[28] Vogel S.: On stability in stochastic programming – Sufficient conditions for continuous convergence and epi-convergence. Preprint of Ilmenau Technical University, 1994 | MR

[29] Wang J.: Continuity of feasible solution sets of probabilistic constrained programs. J. Optim. Theory Appl. 63 (1989), 79–89 | DOI | MR

[30] Wets R. J.-B.: Stochastic programming. In: Handbooks in Operations Research and Management Science, Vol. 1, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North Holland, Amsterdam 1989, pp. 573–629 | MR | Zbl

[31] Zervos M.: On the epiconvergence of stochastic optimization problems. Math. Oper. Res. 24 (1999), 2, 495–508 | DOI | MR | Zbl