Keywords: continuous convergence; epi-convergence; stochastic programming; stability
@article{KYB_2003_39_1_a5,
author = {Vogel, Silvia and Lachout, Petr},
title = {On continuous convergence and epi-convergence of random functions. {Part} {I:} {Theory} and relations},
journal = {Kybernetika},
pages = {75--98},
year = {2003},
volume = {39},
number = {1},
mrnumber = {1980125},
zbl = {1249.90184},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a5/}
}
Vogel, Silvia; Lachout, Petr. On continuous convergence and epi-convergence of random functions. Part I: Theory and relations. Kybernetika, Tome 39 (2003) no. 1, pp. 75-98. http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a5/
[1] Attouch H.: Variational Convergence for Functions and Operators. Pitman, London 1984 | MR | Zbl
[2] Artstein Z., Wets R. J.-B.: Stability results for stochastic programs and sensors, allowing for discontinuous objective functions. SIAM J. Optim. 4 (1994), 537-550 | DOI | MR | Zbl
[3] Artstein Z., Wets R. J.-B.: Consistency of minimizers and the SLLN for stochastic programs. J. Convex Analysis 2 (1995), 1–17 | MR | Zbl
[4] Bank B., Guddat J., Klatte D., Kummer, B., Tammer K.: Non-Linear Parametric Optimization. Akademie Verlag, Berlin 1982 | Zbl
[5] Beer G.: Topologies on Closed and Closed Convex Sets. Kluwer, Dordrecht 1993 | MR | Zbl
[6] Cohn D. L.: Measure Theory. Birkhäuser, Boston 1980 | MR | Zbl
[7] Dupačová J.: Stability and sensitivity analysis in stochastic programming. Ann. Oper. Res. 27 (1990), 115–142 | DOI | MR
[8] Dupačová J., Wets R. J.-B.: Asymptotic behavior of statistical estimators and of optimal solutions of stochastic problems. Ann. Statist. 16 (1988), 1517–1549 | DOI | MR
[9] Kall P.: Approximations to optimization problems: An elementary review. Math. Oper. Res. 11 (1986), 9–18 | DOI | MR
[10] Kall P.: On approximations and stability in stochastic programming. In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 86–103 | MR | Zbl
[11] Kaniovski Y. M., King A. J., Wets R. J.-B.: Probabilistic bounds (via large deviations) for the solution of stochastic programming problems. Ann. Oper. Res. 56 (1995), 189–208 | DOI | MR
[12] Kaňková V., Lachout P.: Convergence rate of empirical estimates in stochastic programming. Informatica 3 (1992), 497–523 | MR | Zbl
[13] King A. J., Wets R. J.-B.: Epi-consistency of convex stochastic programs. Stochastics and Stochastics Reports 34 (1991), 83–92 | DOI | MR | Zbl
[14] Langen H.-J.: Convergence of dynamic programming models. Math. Oper. Res. 6 (1981), 493–512 | DOI | MR | Zbl
[15] Pflug G. Ch., Ruszczyňski, A., Schultz R.: On the Glivenko-Cantelli problem in stochastic programming: Linear recourse and extensions. Math. Oper. Res. 23 (1998), 204–220 | DOI | MR | Zbl
[16] Robinson S. M.: Local epi-continuity and local optimization. Math. Programming 37 (1987), 208–222 | DOI | MR | Zbl
[17] Robinson S. M., Wets R. J.-B.: Stability in two-stage stochastic programming. SIAM J. Control Optim. 25 (1987), 1409–1416 | DOI | MR | Zbl
[18] Rockafellar R. T., Wets R. J.-B.: Variational Analysis. Springer–Verlag, Berlin 1998 | MR | Zbl
[19] Römisch W., Schultz R.: Distribution sensitivity in stochastic programming. Math. Programming 50 (1991), 197–226 | DOI | MR | Zbl
[20] Römisch W., Schultz R.: Stability of solutions for stochastic programs with complete recourse. Math. Oper. Res. 18 (1993), 590–609 | DOI | MR | Zbl
[21] Römisch W., Schultz R.: Lipschitz stability for stochastic programs with complete recourse. SIAM J. Optim. 6 (1996), 531–447 | DOI | MR | Zbl
[22] Römisch W., Wakolbinger A.: Obtaining convergence rates for approximations in stochastic programming. In: Parametric Programming and Related Topics (J. Guddat, H. Th. Jongen, B. Kummer, and F. Nožička, eds.), Akademie Verlag, Berlin 1987, pp. 327–343 | MR
[23] Salinetti G., Wets R. J.-B.: On the convergence of closed-valued measurable multifunctions. Trans. Amer. Math. Soc. 266 (1981), 275–289 | MR | Zbl
[24] Salinetti G., Wets R. J-B.: On the convergence in distribution of measurable multifunctions (random sets), normal integrands, stochastic processes and stochastic infima. Math. Oper. Res. 11 (1986), 385–419 | DOI | MR | Zbl
[25] Vogel S.: Stochastische Stabilitätskonzepte. Habilitation, Ilmenau Technical University, 1991
[26] Vogel S.: On stability in multiobjective programming – A stochastic approach. Math. Programming 56 (1992), 91–119 | DOI | MR | Zbl
[27] Vogel S.: A stochastic approach to stability in stochastic programming. J. Comput. Appl. Math., Series Appl. Analysis and Stochastics 56 (1994), 65–96 | MR | Zbl
[28] Vogel S.: On stability in stochastic programming – Sufficient conditions for continuous convergence and epi-convergence. Preprint of Ilmenau Technical University, 1994 | MR
[29] Wang J.: Continuity of feasible solution sets of probabilistic constrained programs. J. Optim. Theory Appl. 63 (1989), 79–89 | DOI | MR
[30] Wets R. J.-B.: Stochastic programming. In: Handbooks in Operations Research and Management Science, Vol. 1, Optimization (G. L. Nemhauser, A. H. G. Rinnooy Kan, and M. J. Todd, eds.), North Holland, Amsterdam 1989, pp. 573–629 | MR | Zbl
[31] Zervos M.: On the epiconvergence of stochastic optimization problems. Math. Oper. Res. 24 (1999), 2, 495–508 | DOI | MR | Zbl