Blended $\phi$-divergences with examples
Kybernetika, Tome 39 (2003) no. 1, pp. 43-54 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

Several new examples of divergences emerged in the recent literature called blended divergences. Mostly these examples are constructed by the modification or parametrization of the old well-known phi-divergences. Newly introduced parameter is often called blending parameter. In this paper we present compact theory of blended divergences which provides us with a generally applicable method for finding new classes of divergences containing any two divergences $D_0$ and $D_1$ given in advance. Several examples of blends of well-known divergences are given.
Several new examples of divergences emerged in the recent literature called blended divergences. Mostly these examples are constructed by the modification or parametrization of the old well-known phi-divergences. Newly introduced parameter is often called blending parameter. In this paper we present compact theory of blended divergences which provides us with a generally applicable method for finding new classes of divergences containing any two divergences $D_0$ and $D_1$ given in advance. Several examples of blends of well-known divergences are given.
Classification : 62B10, 62F35, 62F99, 62G35, 62G99
Keywords: divergences of probability distributions; blended divergences; statistical applications
@article{KYB_2003_39_1_a3,
     author = {K\r{u}s, V\'aclav},
     title = {Blended $\phi$-divergences with examples},
     journal = {Kybernetika},
     pages = {43--54},
     year = {2003},
     volume = {39},
     number = {1},
     mrnumber = {1980123},
     zbl = {1243.62004},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a3/}
}
TY  - JOUR
AU  - Kůs, Václav
TI  - Blended $\phi$-divergences with examples
JO  - Kybernetika
PY  - 2003
SP  - 43
EP  - 54
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a3/
LA  - en
ID  - KYB_2003_39_1_a3
ER  - 
%0 Journal Article
%A Kůs, Václav
%T Blended $\phi$-divergences with examples
%J Kybernetika
%D 2003
%P 43-54
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a3/
%G en
%F KYB_2003_39_1_a3
Kůs, Václav. Blended $\phi$-divergences with examples. Kybernetika, Tome 39 (2003) no. 1, pp. 43-54. http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a3/

[1] Cressie N., Read T. R. C.: Multinomial goodness-of-fit tests. J. Roy. Statist. Soc. Ser. A 46 (1984), 440–464 | MR | Zbl

[2] Kafka P., Österreicher F., Vincze I.: On powers of $f$-divergences defining a distance. Studia Sci. Math. Hungar. 26 (1991), 415–422 | MR

[3] Kůs V.: Divergences and Generalized Score Functions in Statistical Inference. Ph.D. Thesis, Czech Technical University, Prague 1998

[4] Cam L. Le: Asymptotic Methods in Statistical Decision Theory. Springer, New York 1986 | MR | Zbl

[5] Lindsay B. G.: Efficiency versus robustness. The case for minimum Hellinger distance and other methods. Ann. Statist. 22 (1994), 1081–1114 | DOI | MR | Zbl

[6] Menéndez M., Morales D., Pardo, L., Vajda I.: Two approaches to grouping of data and related disparity statistics. Comm. Statist. A – Theory Methods 27 (1998), 609–633 | DOI | MR | Zbl

[7] Österreicher. F.: On a class of perimeter-type distances of probability distributions. Kybernetika 32 (1996), 389–393 | MR | Zbl

[8] Park, Ch., Basu A., Basu S.: Robust minimum distance inference based on combined distances. Comm. Statist. B – Simulation Comput. 24 (1995), 653–673 | DOI | Zbl

[9] Read R. C., Cressie N. A. C.: Goodness-of-fit Statistics for Discrete Multivariate Data. Springer, Berlin 1988 | MR | Zbl

[10] Vajda I.: Theory of Statistical Inference and Information. Kluwer, Boston 1989 | Zbl

[11] Vajda I.: Information–Theoretic Methods in Statistics. Research Report No. 1834, ÚTIA, Academy of Sciences of the Czech Republic, Prague 1995