Wild bootstrap in RCA(1) model
Kybernetika, Tome 39 (2003) no. 1, pp. 1-12 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In the paper, a heteroskedastic autoregressive process of the first order is considered where the autoregressive parameter is random and errors are allowed to be non-identically distributed. Wild bootstrap procedure to approximate the distribution of the least-squares estimator of the mean of the random parameter is proposed as an alternative to the approximation based on asymptotic normality, and consistency of this procedure is established.
In the paper, a heteroskedastic autoregressive process of the first order is considered where the autoregressive parameter is random and errors are allowed to be non-identically distributed. Wild bootstrap procedure to approximate the distribution of the least-squares estimator of the mean of the random parameter is proposed as an alternative to the approximation based on asymptotic normality, and consistency of this procedure is established.
Classification : 62E20, 62G09, 62M10
Keywords: randomcoefficient autoregression; heteroskedasticity; wild bootstrap
@article{KYB_2003_39_1_a0,
     author = {Pr\'a\v{s}kov\'a, Zuzana},
     title = {Wild bootstrap in {RCA(1)} model},
     journal = {Kybernetika},
     pages = {1--12},
     year = {2003},
     volume = {39},
     number = {1},
     mrnumber = {1980120},
     zbl = {1248.62155},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a0/}
}
TY  - JOUR
AU  - Prášková, Zuzana
TI  - Wild bootstrap in RCA(1) model
JO  - Kybernetika
PY  - 2003
SP  - 1
EP  - 12
VL  - 39
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a0/
LA  - en
ID  - KYB_2003_39_1_a0
ER  - 
%0 Journal Article
%A Prášková, Zuzana
%T Wild bootstrap in RCA(1) model
%J Kybernetika
%D 2003
%P 1-12
%V 39
%N 1
%U http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a0/
%G en
%F KYB_2003_39_1_a0
Prášková, Zuzana. Wild bootstrap in RCA(1) model. Kybernetika, Tome 39 (2003) no. 1, pp. 1-12. http://geodesic.mathdoc.fr/item/KYB_2003_39_1_a0/

[1] Anděl J.: Autoregressive series with random parameters. Math. Operationsforch. Statist. 7 (1976), 735–741 | DOI | MR

[2] Davidson J.: Stochastic Limit Theory. Oxford University Press, New York 1994 | MR | Zbl

[3] Janečková H.: Time Series with Changing Parameters. Ph.D. Thesis, Charles University, Prague 2002

[4] Janečková H.: Some generalizations in a heteroscedastic RCA(1) model. Acta Univ. Carolin. – Math. Phys. 43 (2002), 21–47 | MR | Zbl

[5] Jürgens U.: The estimation of a random coefficient AR(1) process under moment conditions. Statist. Hefte 16 (1985), 237–249 | DOI | MR | Zbl

[6] Kreiss J. P.: Asymptotical properties of residual bootstrap for autoregression. Preprint, TU Braunschweig 1997

[7] Liu R. Y.: Bootstrap procedures under some non-i. i.d. models. Ann. Statist. 16 (1988), 1696–1708 | MR | Zbl

[8] Nicolls D. F., Quinn B. G.: Random Coefficient Autoregressive Models: An Introduction (Lecture Notes in Statistics 11). Springer–Verlag, New York 1982 | MR

[9] Prášková Z.: Bootstrapping in nonstationary autoregression. Kybernetika 38 (2002), 389–404 | MR