Keywords: Kolmogorov complexity; typical string; pseudorandom generator
@article{KYB_2002_38_6_a5,
author = {\v{S}indel\'a\v{r}, Jan and Bo\v{c}ek, Pavel},
title = {Kolmogorov complexity, pseudorandom generators and statistical models testing},
journal = {Kybernetika},
pages = {747--759},
year = {2002},
volume = {38},
number = {6},
mrnumber = {1954395},
zbl = {1265.68083},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a5/}
}
Šindelář, Jan; Boček, Pavel. Kolmogorov complexity, pseudorandom generators and statistical models testing. Kybernetika, Tome 38 (2002) no. 6, pp. 747-759. http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a5/
[1] Calude C.: Theories of Computational Complexity. North–Holland, Amsterdam 1988 | MR | Zbl
[2] Fine T. L.: Theories of Probability – an Examination of Foundations. Academic Press, New York 1973 | MR | Zbl
[3] Kolmogorov A. N.: Three approaches to the quantitative definition of information. Problems Inform. Transmission 1 (1965), 1, 1–7 | MR
[4] Kramosil I., Šindelář J.: A note on the law of iterated logarithm from the viewpoint of Kolmogorov program complexity. Problems Control Inform. Theory 16 (1987), 6, 399–409 | MR
[5] Kramosil I., Šindelář J.: On pseudo-random sequences and their relation to a class of stochastical laws. Kybernetika 28 (1991), 6, 383–391 | MR
[6] Li M., Vitayi P.: Introduction to Kolmogorov Complexity and its Applications. Springer, New York 1997 | MR
[7] Martin-Löf P.: The definition of random sequences. Inform. and Control 9 (1966), 602–619 | DOI | MR
[8] Rogers H., Jr.: Theory of Recursive Functions and Effective Computability. McGraw–Hill, New York 1967 | MR | Zbl
[9] Šindelář J., Boček P.: Kolmogorov complexity and probability measures. Kybernetika 38 (2002), 729–745 | MR