Keywords: Kolmogorov complexity; probability measure; infinite oscillation
@article{KYB_2002_38_6_a4,
author = {\v{S}indel\'a\v{r}, Jan and Bo\v{c}ek, Pavel},
title = {Kolmogorov complexity and probability measures},
journal = {Kybernetika},
pages = {729--745},
year = {2002},
volume = {38},
number = {6},
mrnumber = {1954394},
zbl = {1265.68082},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a4/}
}
Šindelář, Jan; Boček, Pavel. Kolmogorov complexity and probability measures. Kybernetika, Tome 38 (2002) no. 6, pp. 729-745. http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a4/
[1] Calude C.: Theories of Computational Complexity. North–Holland, Amsterdam – New York – Oxford – Tokyo 1988 | MR | Zbl
[2] Chaitin G. J.: On the length of programs for computing finite binary sequences. J. Assoc. Comput. Mach. 13 (1966), 547–569 | DOI | MR | Zbl
[3] Fine T. L.: Theories of Probability – an Examination of Foundations. Academic Press, New York – London 1973 | MR | Zbl
[4] Katseff H. P.: Complexity dips in infinite binary sequences. Inform. and Control 38 (1978), 258–263 | DOI | MR
[5] Kolmogorov A. N.: Three approaches to the quantitative definition of information. Problems Inform. Transmission 1 (1965), 1, 1–7 | MR
[6] Kolmogorov A. N., Uspenskiǐ V. A.: Algorithms and randomness (in Russian). Teor. Veryatnost. i Primenen. 32 (1987), 3, 425–455 | MR
[7] Kramosil I., Šindelář J.: A note on the law of iterated logarithm from the viewpoint of Kolmogorov program complexity. Problems Control Inform. Theory 16 (1987), 6, 399–409 | MR
[8] Kramosil I., Šindelář J.: On pseudo-random sequences and their relation to a class of stochastical laws. Kybernetika 28 (1992), 6, 383–391 | MR | Zbl
[9] Li M., Vitayi P.: An Introduction to Kolmogorov Complexity and its Applications. Springer, New York 1997 | MR
[10] Martin–Löf P.: The definition of random sequences. Inform. and Control 9 (1966), 602–619 | DOI | MR
[11] Martin–Löf P.: Complexity oscillations in infinite binary sequences. Z. Wahrsch. Verw. Gebiete 19 (1971), 225–230 | DOI | MR | Zbl
[12] Rogers H., Jr.: Theory of Recursive Functions and Effective Computability. McGraw–Hill, New York 1967 | MR | Zbl
[13] Solomonoff R. J.: A formal theory of inductive inference. Part I. Inform. and Control 7 (1964), 1–22 | DOI | MR | Zbl
[14] Vovk V. G.: The law of of the iterated logarithm for sequences that are random in the sense of Kolmogorov or chaotic (in Russian). Teor. Veroyatnost. i Primenen. 32 (1978), 3, 456–468 | MR