Representation of logic formulas by normal forms
Kybernetika, Tome 38 (2002) no. 6, pp. 717-728 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

In this paper, we deal with the disjunctive and conjunctive normal forms in the frame of predicate BL-logic and prove theirs conditional equivalence to appropriate formulas. Our aim is to show approximation ability of special normal forms defined by means of reflexive binary predicate.
In this paper, we deal with the disjunctive and conjunctive normal forms in the frame of predicate BL-logic and prove theirs conditional equivalence to appropriate formulas. Our aim is to show approximation ability of special normal forms defined by means of reflexive binary predicate.
Classification : 03B50, 03B52
Keywords: BL-logic; extensionality
@article{KYB_2002_38_6_a3,
     author = {Da\v{n}kov\'a, Martina},
     title = {Representation of logic formulas by normal forms},
     journal = {Kybernetika},
     pages = {717--728},
     year = {2002},
     volume = {38},
     number = {6},
     mrnumber = {1954393},
     zbl = {1265.03013},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a3/}
}
TY  - JOUR
AU  - Daňková, Martina
TI  - Representation of logic formulas by normal forms
JO  - Kybernetika
PY  - 2002
SP  - 717
EP  - 728
VL  - 38
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a3/
LA  - en
ID  - KYB_2002_38_6_a3
ER  - 
%0 Journal Article
%A Daňková, Martina
%T Representation of logic formulas by normal forms
%J Kybernetika
%D 2002
%P 717-728
%V 38
%N 6
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a3/
%G en
%F KYB_2002_38_6_a3
Daňková, Martina. Representation of logic formulas by normal forms. Kybernetika, Tome 38 (2002) no. 6, pp. 717-728. http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a3/

[1] Cignoli R., d’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many–valued Reasoning. Kluwer, Dordrecht 2000 | MR | Zbl

[2] Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht 1998 | MR | Zbl

[3] Kreinovich V., Nguyen H. T., Sprecher D. A.: Normal forms for fuzzy logic – an application of Kolmogorov’s theorem. Internat. J. Uncertainty, Fuzzy Knowledge-Based Systems 4 (1996), 331–349 | DOI | MR | Zbl

[4] Daňková M.: Extensionality and continuity of fuzzy relations. J. Electrical Engineering 51 (2000), (12/s), 33–35 | Zbl

[5] Novák V., Perfilieva, I., Močkoř J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston – Dordrecht 1999 | Zbl

[6] Perfilieva I.: Fuzzy logic normal forms for control law representation. In: Fuzzy Algorithms for Control (H. Verbruggen, H.-J. Zimmermann, and R. Babuska, eds.), Kluwer, Boston – Dordrecht 1999, pp. 111–125

[7] Perfilieva I.: Normal forms for fuzzy logic functions and their approximation ability. Fuzzy Sets and Systems, submitted | Zbl

[8] Perfilieva I.: Logical approximation. Fuzzy Sets and Systems, submitted | Zbl