@article{KYB_2002_38_6_a3,
author = {Da\v{n}kov\'a, Martina},
title = {Representation of logic formulas by normal forms},
journal = {Kybernetika},
pages = {717--728},
year = {2002},
volume = {38},
number = {6},
mrnumber = {1954393},
zbl = {1265.03013},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a3/}
}
Daňková, Martina. Representation of logic formulas by normal forms. Kybernetika, Tome 38 (2002) no. 6, pp. 717-728. http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a3/
[1] Cignoli R., d’Ottaviano I. M. L., Mundici D.: Algebraic Foundations of Many–valued Reasoning. Kluwer, Dordrecht 2000 | MR | Zbl
[2] Hájek P.: Metamathematics of Fuzzy Logic. Kluwer, Dordrecht 1998 | MR | Zbl
[3] Kreinovich V., Nguyen H. T., Sprecher D. A.: Normal forms for fuzzy logic – an application of Kolmogorov’s theorem. Internat. J. Uncertainty, Fuzzy Knowledge-Based Systems 4 (1996), 331–349 | DOI | MR | Zbl
[4] Daňková M.: Extensionality and continuity of fuzzy relations. J. Electrical Engineering 51 (2000), (12/s), 33–35 | Zbl
[5] Novák V., Perfilieva, I., Močkoř J.: Mathematical Principles of Fuzzy Logic. Kluwer, Boston – Dordrecht 1999 | Zbl
[6] Perfilieva I.: Fuzzy logic normal forms for control law representation. In: Fuzzy Algorithms for Control (H. Verbruggen, H.-J. Zimmermann, and R. Babuska, eds.), Kluwer, Boston – Dordrecht 1999, pp. 111–125
[7] Perfilieva I.: Normal forms for fuzzy logic functions and their approximation ability. Fuzzy Sets and Systems, submitted | Zbl
[8] Perfilieva I.: Logical approximation. Fuzzy Sets and Systems, submitted | Zbl