Keywords: artificial neural network; non-linear time series model; prediction
@article{KYB_2002_38_6_a1,
author = {Allende, H\'ector and Moraga, Claudio and Salas, Rodrigo},
title = {Artificial neural networks in time series forecasting: a comparative analysis},
journal = {Kybernetika},
pages = {685--707},
year = {2002},
volume = {38},
number = {6},
mrnumber = {1954954},
zbl = {1265.62011},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a1/}
}
TY - JOUR AU - Allende, Héctor AU - Moraga, Claudio AU - Salas, Rodrigo TI - Artificial neural networks in time series forecasting: a comparative analysis JO - Kybernetika PY - 2002 SP - 685 EP - 707 VL - 38 IS - 6 UR - http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a1/ LA - en ID - KYB_2002_38_6_a1 ER -
Allende, Héctor; Moraga, Claudio; Salas, Rodrigo. Artificial neural networks in time series forecasting: a comparative analysis. Kybernetika, Tome 38 (2002) no. 6, pp. 685-707. http://geodesic.mathdoc.fr/item/KYB_2002_38_6_a1/
[1] Allende H., Galbiati J.: Robust test in time series model. J. Interamerican Statist. Inst. 1 (1996), 48. 35–79 | MR
[2] Allende H., Heiler S.: Recursive generalized M-estimates for autoregressive moving average models. J. Time Ser. Anal. 13 (1992), 1–18 | DOI | MR | Zbl
[3] Anderson B., Moore J.: Optimal Filtering. Prentice Hall, Englewood Cliffs, N.J. 1979 | Zbl
[4] Baxt W. G.: Use of an artificial neural network for data analysis in clinical decision marking: The diagnosis of acute coronary occlusion. Neural Computational 2 (1990), 480–489 | DOI
[5] Benitez J. M., Castro J. L., Requena J.: Are neural network black boxes? IEEE Trans. Neural Networks 8 (1997), 1156–1163 | DOI
[6] Beran J.: Statistics for Long-memory Processes. Chapman and Hall, London 1994 | MR | Zbl
[7] Bowerman B. L., O’Connell R. T.: Forecasting and time series: an applied approach. Third edition. Duxbury Press, 1993 | MR | Zbl
[8] Box G. E. P., Jenkins G. M., Reinsel G. C.: Time Series Analysis, Forecasting and Control. Third edition. Prentice Hall, Englewood Cliffs, N.J. 1994 | MR | Zbl
[9] Breiman L., Friedman J., Olshen, R., Stone C. J.: Classification and Regression Trees. Belmont, C. A. Wadsworth, 1984 | MR | Zbl
[10] Brockwell P. J., Davis R. A.: Time Series Theory and Methods. Springer Verlag, New York 1991 | MR | Zbl
[11] Brown R. G.: Smoothing, Forecasting and Prediction of Discrete Time Series. Prentice Hall, Englewood Cliffs, N.J. 1962 | Zbl
[12] Chatfield C.: Forecasting in the 1990s. Statistician 4 (1997), 46, 461–473
[13] Cheng B., Titterington D. M.: Neural networks: review from a statistical perspective. Statist. Sci. 1 (1994), 2–54 | DOI | MR
[14] Connor J. T., Martin R. D.: Recurrent neural networks and robust time series prediction. IEEE Trans. Neural Networks 2 (1994), 5, 240–253 | DOI
[15] Crato N., Ray B. K.: Model selection and forecasting for long-range dependent processes. Internat. J. Forecasting 15 (1996), 107–125 | DOI
[16] Fine T. L.: Feedforward Neural Network Methodology. Springer, New York 1999 | MR | Zbl
[17] Flury B., Riedwyl H.: Multivariate Statistics: A Practical Approach. Chapman Hall, London 1990
[18] Friedman J. H.: Multivariate adaptive regression spline. Ann. Statist. 19 (1991), 1–141 | DOI | MR
[19] Funahashi K. I.: On the approximate realization of continuous mappings by neural networks. Neural Networks 2 (1989), 183–192 | DOI
[20] Han J., Moraga, C., Sinne S.: Optimization of feedforward neural networks. Engrg. Appl. Artificial Intelligence 2 (1996), 9, 109–119 | DOI
[21] Hornik K., Stinchcombe, M., White H.: Multilayer feedforward networks are universal approximators. Neural Networks 2 (1989), 359–366 | DOI
[22] Hristev R. M.: Artificial Neural Networks. Preprint of a book obtained via Internet from the author, 1998
[23] Hutchinson J. M.: A Radial Basis Function Approach to Financial Time Series Analysis. Ph.D. Thesis. Massachusetts Institute of Technology, 1994 | MR
[24] Hwang J. T. G., Ding A. A.: Prediction for artificial neural networks. J. Amer. Statist. Assoc. 92 (1997), 438, 748–757 | MR
[25] Lin J. L., Granger C. W.: Forecasting from non-linear models in practice. Internat. J. Forecasting 13 (1994), 1–9 | DOI
[26] Lippmann R. P.: An introduction to computing with neural nets. IEEE ASSP Magazine (1997), 4–22
[27] Ljung G. M., Bax G. E. P.: On a measure of lack of fit in time series models. Biometrika 65 (1978), 297–303 | DOI
[28] McCullagh P., Nelder J. A.: Generalized Linear Models. Chapman Hall, London 1989 | MR | Zbl
[29] Meditch J. S.: Stochastic Optimal linear Estimation and Control. MacGraw–Hill, New York 1969 | Zbl
[30] Moody J. E., Utans J.: Architecture selection strategies for neural networks. In: Refenes A. P. N. Neural Networks in the Capital Markets, Wiley, New York 1995
[31] Moraga C.: Properties of parametric feedforward neural networks. In: XXIII Conferencia Latinoamericana de Informática, Valparaíso 1997, Vol. 2, pp. 861–870
[32] Pineda F. J.: Generalization of Backpropagation to recurrent and higher order networks. In: Proc. IEEE Conf. Neural Inform. Proc. Syst., 1987
[33] Poli R., Cagnoni S., Coppini, G., Walli G.: A neural network expert system for diagnosing and treating hypertension. Computer (1991), 64–71
[34] Referes A. P. N., Zapranis A. D.: Neural model identification, variable selection and model adequacy. J. Forecasting 18 (1999), 299–322 | DOI
[35] Reinsel G. C.: Elements of Multivariate Time Series Analysis. Springer Verlag, New York 1993 | MR | Zbl
[36] Ripley B. D.: Statistical aspects of neural networks. In: Networks and Chaos-Statistical and Probabilistic Aspect (O. E. Barndorf–Nielsen, J. L. Jensen, and W. S. Kendall, eds.), Chapman and Hall, London 1993 | MR | Zbl
[37] Sarle W. S.: Neural networks and statistical methods. In: Proc. of the 19th Anual SAS Users Group International Conference, 1994
[38] Smith J., Yadav S.: Forecasting cost incurred from unit differencing fractionally integrated processes. Internat. J. Forecasting 10 (1994), 507–514 | DOI
[39] Stern H. S.: Neural networks in applied statistics. Technometrics 38 (1996), 3, 205–214 | DOI | MR | Zbl
[40] Rao T. Subba: On the theory of bilinear models. J. Roy. Statist. Soc. Ser. B 43 (1981), 244–255 | MR
[41] Sussmann H. J.: Uniqueness of the weights for minimal feedforward nets with a given input-output map. Neural Networks 5 (1992), 589–593 | DOI
[42] Temme K. H., Heider, R., Moraga C.: Generalized neural networks for fuzzy modeling. In: Proc. Internat. Conference of European Society of Fuzzy Logic and Technology, EUSFLAT’99 Palma de Mallorca 1999
[43] Tong H.: Non-linear Time Series. Oxford University Press, Oxford 1990 | Zbl
[44] Vapnik V.: The Nature of Statistical Learning Theory. Springer Verlag, Berlin 1995 | MR | Zbl
[45] Vapnik V., Chervoneski A.: The necessary and sufficient conditions for consistency of the method of empirical risk minimization. Pattern Recognition Image Anal. 1 (1991), 284–305
[46] Waibel A., Hanazawa T., Hinton G., Shikano, K., Lang K. J.: Phoneme recognition using time delay neural networks. IEEE Trans. Acoust. Speech Signal Process. 37 (1989), 324–329 | DOI
[47] Wu F. Y., Yen K. K.: Application of neural network in regression analysis. In: Proc. 14th Annual Conference on Computers and Industrial Engineering, 1992