@article{KYB_2002_38_5_a8,
author = {Pommaret, Jean-Fran\c{c}ois},
title = {Poles and zeroes of nonlinear control systems},
journal = {Kybernetika},
pages = {609--615},
year = {2002},
volume = {38},
number = {5},
mrnumber = {1966949},
zbl = {1265.93117},
language = {en},
url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a8/}
}
Pommaret, Jean-François. Poles and zeroes of nonlinear control systems. Kybernetika, Tome 38 (2002) no. 5, pp. 609-615. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a8/
[1] Bourbaki N.: Algèbre Commutative. Chap. I–IV. Masson, Paris 1985 | Zbl
[2] Bourlès H., Fliess M.: Finite poles and zeros of linear systems: an intrinsic approach. Internat. J. Control 68 (1997), 4, 897–922 | DOI | MR | Zbl
[3] Gerdt V. P., Blinkov Y. A.: Minimal involutive bases. Math. Comput. Simulations 45 (1998), 543–560 | DOI | MR | Zbl
[4] Kunz E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Basel 1985 | MR | Zbl
[5] Maisonobe P., Sabbah C.: D-Modules Cohérents et Holonomes. Travaux en Cours, 45, Hermann, Paris 1993 | MR | Zbl
[6] Matsumura H.: Commutative Ring Theory. (Cambridge Studies in Advanced Mathematics 8.) Cambridge University Press, Cambridge 1986 | MR | Zbl
[7] Pommaret J.-F.: Controllability of nonlinear multidimensional control. In: Nonlinear Control in the Year 2000, Proceedings NCN 2000 (A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, eds.), Springer, Paris 2000 | Zbl
[9] Pommaret J.-F., Quadrat A.: Algebraic analysis of linear multidimensional control systems. IMA J. Math. Control Inform. 16 (1999), 275–297 | DOI | MR | Zbl
[10] Pommaret J.-F., Quadrat A.: Localization and parametrization of linear multidimensional control systems. Systems Control Lett. 37 (1999), 247–260 | DOI | MR | Zbl
[11] Sain M. K., Schrader C. B.: Research on systems zeros: a survey. Internat. J. Control 50 (1989), 4, 1407–1433 | DOI | MR
[12] Wood J., Oberst, U., Owens D.: A behavioural approach to the pole structure of 1D and $n$D linear systems. SIAM J. Control Optim. 38 (2000), 2, 627–661 | DOI | MR