Poles and zeroes of nonlinear control systems
Kybernetika, Tome 38 (2002) no. 5, pp. 609-615 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

During the last ten years, the concepts of “poles” and “zeros” for linear control systems have been revisited by using modern commutative algebra and module theory as a powerful substitute for the theory of polynomial matrices. Very recently, these concepts have been extended to multidimensional linear control systems with constant coefficients. Our purpose is to use the methods of “algebraic analysis” in order to extend these concepts to the variable coefficients case and, as a byproduct, to the nonlinear situation. We also provide nontrivial explicit examples.
During the last ten years, the concepts of “poles” and “zeros” for linear control systems have been revisited by using modern commutative algebra and module theory as a powerful substitute for the theory of polynomial matrices. Very recently, these concepts have been extended to multidimensional linear control systems with constant coefficients. Our purpose is to use the methods of “algebraic analysis” in order to extend these concepts to the variable coefficients case and, as a byproduct, to the nonlinear situation. We also provide nontrivial explicit examples.
Classification : 93B25, 93B55, 93B60, 93C10
Keywords: pole; zero; nonlinear control system
@article{KYB_2002_38_5_a8,
     author = {Pommaret, Jean-Fran\c{c}ois},
     title = {Poles and zeroes of nonlinear control systems},
     journal = {Kybernetika},
     pages = {609--615},
     year = {2002},
     volume = {38},
     number = {5},
     mrnumber = {1966949},
     zbl = {1265.93117},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a8/}
}
TY  - JOUR
AU  - Pommaret, Jean-François
TI  - Poles and zeroes of nonlinear control systems
JO  - Kybernetika
PY  - 2002
SP  - 609
EP  - 615
VL  - 38
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a8/
LA  - en
ID  - KYB_2002_38_5_a8
ER  - 
%0 Journal Article
%A Pommaret, Jean-François
%T Poles and zeroes of nonlinear control systems
%J Kybernetika
%D 2002
%P 609-615
%V 38
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a8/
%G en
%F KYB_2002_38_5_a8
Pommaret, Jean-François. Poles and zeroes of nonlinear control systems. Kybernetika, Tome 38 (2002) no. 5, pp. 609-615. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a8/

[1] Bourbaki N.: Algèbre Commutative. Chap. I–IV. Masson, Paris 1985 | Zbl

[2] Bourlès H., Fliess M.: Finite poles and zeros of linear systems: an intrinsic approach. Internat. J. Control 68 (1997), 4, 897–922 | DOI | MR | Zbl

[3] Gerdt V. P., Blinkov Y. A.: Minimal involutive bases. Math. Comput. Simulations 45 (1998), 543–560 | DOI | MR | Zbl

[4] Kunz E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Basel 1985 | MR | Zbl

[5] Maisonobe P., Sabbah C.: D-Modules Cohérents et Holonomes. Travaux en Cours, 45, Hermann, Paris 1993 | MR | Zbl

[6] Matsumura H.: Commutative Ring Theory. (Cambridge Studies in Advanced Mathematics 8.) Cambridge University Press, Cambridge 1986 | MR | Zbl

[7] Pommaret J.-F.: Controllability of nonlinear multidimensional control. In: Nonlinear Control in the Year 2000, Proceedings NCN 2000 (A. Isidori, F. Lamnabhi-Lagarrigue, and W. Respondek, eds.), Springer, Paris 2000 | Zbl

[9] Pommaret J.-F., Quadrat A.: Algebraic analysis of linear multidimensional control systems. IMA J. Math. Control Inform. 16 (1999), 275–297 | DOI | MR | Zbl

[10] Pommaret J.-F., Quadrat A.: Localization and parametrization of linear multidimensional control systems. Systems Control Lett. 37 (1999), 247–260 | DOI | MR | Zbl

[11] Sain M. K., Schrader C. B.: Research on systems zeros: a survey. Internat. J. Control 50 (1989), 4, 1407–1433 | DOI | MR

[12] Wood J., Oberst, U., Owens D.: A behavioural approach to the pole structure of 1D and $n$D linear systems. SIAM J. Control Optim. 38 (2000), 2, 627–661 | DOI | MR