Disturbance decoupling of nonlinear MISO systems by static measurement feedback
Kybernetika, Tome 38 (2002) no. 5, pp. 601-608 Cet article a éte moissonné depuis la source Czech Digital Mathematics Library

Voir la notice de l'article

This paper highlights the role of the rank of a differential one-form in the solution of such nonlinear control problems via measurement feedback as disturbance decoupling problem of multi-input single output (MISO) systems. For the later problem, some necessary conditions and sufficient conditions are given.
This paper highlights the role of the rank of a differential one-form in the solution of such nonlinear control problems via measurement feedback as disturbance decoupling problem of multi-input single output (MISO) systems. For the later problem, some necessary conditions and sufficient conditions are given.
Classification : 93B11, 93B15, 93C10, 93C73, 93D15
Keywords: nonlinear control; decoupling
@article{KYB_2002_38_5_a7,
     author = {Pothin, Richard and Moog, Claude H. and Xia, Xiaohua},
     title = {Disturbance decoupling of nonlinear {MISO} systems by static measurement feedback},
     journal = {Kybernetika},
     pages = {601--608},
     year = {2002},
     volume = {38},
     number = {5},
     mrnumber = {1966948},
     zbl = {1265.93185},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a7/}
}
TY  - JOUR
AU  - Pothin, Richard
AU  - Moog, Claude H.
AU  - Xia, Xiaohua
TI  - Disturbance decoupling of nonlinear MISO systems by static measurement feedback
JO  - Kybernetika
PY  - 2002
SP  - 601
EP  - 608
VL  - 38
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a7/
LA  - en
ID  - KYB_2002_38_5_a7
ER  - 
%0 Journal Article
%A Pothin, Richard
%A Moog, Claude H.
%A Xia, Xiaohua
%T Disturbance decoupling of nonlinear MISO systems by static measurement feedback
%J Kybernetika
%D 2002
%P 601-608
%V 38
%N 5
%U http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a7/
%G en
%F KYB_2002_38_5_a7
Pothin, Richard; Moog, Claude H.; Xia, Xiaohua. Disturbance decoupling of nonlinear MISO systems by static measurement feedback. Kybernetika, Tome 38 (2002) no. 5, pp. 601-608. http://geodesic.mathdoc.fr/item/KYB_2002_38_5_a7/

[1] Andiarti R., Moog C. H.: Output feedback disturbance decoupling in nonlinear systems. IEEE Trans. Automat. Control 41 (1996), 1683–1689 | DOI | MR | Zbl

[2] Bryant R. L., Chern S. S., Gardner R. B., Goldschmidt H. L., Griffiths P. A.: Exterior Differential Systems. Springer–Verlag, New York 1991 | MR | Zbl

[3] Conte G., Moog C. H., Perdon A. M.: Nonlinear Control Systems: An Algebraic Setting. (Lecture Notes in Control and Information Science 242.) Springer–Verlag, London 1999 | DOI | MR | Zbl

[4] Hermes H.: Involutive subdistributions and canonical forms for distributions and control systems. In: Theory and Applications of Nonlinear Control Systems (C. I. Byrnes and A. Lindquist, eds.), North–Holland, Amsterdam 1986, pp. 123–135 | MR | Zbl

[5] Huijberts H. J. C., Colpier, L., Moreau P.: Nonlinear input-output decoupling by static output feedback. In: Proc. 3rd European Control Conference (EEC’95), Rome 1995, pp. 1057–1062

[6] Isidori A.: Nonlinear Control Systems. Second edition. Springer–Verlag, Berlin 1989 | MR | Zbl

[7] Isidori A., Krener A. J., Giorgi, C. Gori, Monaco S.: Nonlinear decoupling via feedback: a differential geometric approach. IEEE Trans. Automat. Control 26 (1981), 331–345 | DOI | MR | Zbl

[8] Nijmeijer H., Schaft A. J. van der: Nonlinear dynamical control systems. Springer–Verlag, New York 1990 | MR

[9] Xia X., Moog C. H.: Disturbance decoupling by measurement feedback for SISO nonlinear systems. IEEE Trans. Automat. Control 44 (1999), 1425–1429 | DOI | MR | Zbl